Robust Specification of Real Time Components

  • Kim G. Larsen
  • Axel Legay
  • Louis-Marie Traonouez
  • Andrzej Wąsowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)


Specification theories for real-time systems allow to reason about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract specification to an implementation, we need to be able to reason about possibility to effectively implement the theoretical specifications on physical systems. In the literature, this implementation problem has already been linked to the robustness problem for Timed Automata, where small perturbations in the timings of the models are introduced. We address the problem of robust implementations in timed specification theories. Our contributions include the analysis of robust timed games and the study of robustness with respect to the operators of the theory.


Parallel Composition Winning Strategy Region Graph Input Edge Robust Implementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE, pp. 109–120 (2001)Google Scholar
  2. 2.
    de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theories of Software Intensive Systems, Marktoberdorf Summer School (2004)Google Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Badouel, E., Benveniste, A., Caillaud, B., Henzinger, T., Legay, A., Passerone, R.: Contract theories for embedded systems: A white paper. Research report, IRISA/INRIA Rennes (2009)Google Scholar
  5. 5.
    Bouyer, P., Markey, N., Reynier, P.A.: Robust model-checking of linear-time properties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bouyer, P., Markey, N., Reynier, P.A.: Robust analysis of timed automata via channel machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 157–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-fly algorithm for checking alternating timed simulation. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 73–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Timed parity games: Complexity and robustness. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 124–140. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: Timed I/O automata: a complete specification theory for real-time systems. In: HSCC, pp. 91–100. ACM, New York (2010)CrossRefGoogle Scholar
  11. 11.
    David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: ECDAR: An environment for compositional design and analysis of real time systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Jaubert, R., Reynier, P.A.: Quantitative robustness analysis of flat timed automata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 229–244. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems (an extended abstract). In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 229–242. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    The COMBEST Consortium: Combest,
  16. 16.
    The SPEEDS Consortium: Speeds,
  17. 17.
    Wulf, M., Doyen, L., Markey, N., Raskin, J.F.: Robust safety of timed automata. Formal Methods in System Design 33, 45–84 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wulf, M.D., Doyen, L., Raskin, J.F.: Almost ASAP semantics: from timed models to timed implementations. Formal Aspects of Computing 17(3), 319–341 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kim G. Larsen
    • 1
  • Axel Legay
    • 2
  • Louis-Marie Traonouez
    • 3
  • Andrzej Wąsowski
    • 3
  1. 1.Aalborg UniversityDenmark
  2. 2.INRIA RennesFrance
  3. 3.IT University of CopenhagenDenmark

Personalised recommendations