Decidability of LTL for Vector Addition Systems with One Zero-Test

  • Rémi Bonnet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6945)


We consider the class of Vector Addition Systems with one zero-test and we show that the model-checking problem for LTL is decidable thanks to a reduction to the computability of the cover and the decidability of reachability. Our proof uses the notion of increasing loop, that we refine to fit the non-standard monotony of our system.


Model Check Transition System Maximal Element Linear Temporal Logic Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: Symposium on Logic in Computer Science, p. 313 (1996)Google Scholar
  2. 2.
    Abdulla, P., Mayr, R.: Minimal cost reachability/coverability in priced timed petri nets. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 348–363. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Place-boundedness for vector addition systems with one zero-test. In: Lodaya, K., Mahajan, M. (eds.) Proceedings of the 30th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics, vol. 8, pp. 192–203. Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2010)Google Scholar
  4. 4.
    Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-state systems. In: Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science LICS 1998, p. 70. IEEE Computer Society, Washington, DC, USA (1998)Google Scholar
  5. 5.
    Esparza, J.: On the decidability of model checking for several μ-calculi and petri nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994), 10.1007/BFb0017477CrossRefGoogle Scholar
  6. 6.
    Esparza, J.: Decidability and complexity of petri net problems: An introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Finkel, A., Goubault Larrecq, J.: Forward analysis for WSTS, Part I: Completions. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science - STACS 2009, pp. 433–444. IBFI Schloss Dagstuhl, Germany (2009)Google Scholar
  8. 8.
    Finkel, A., Sangnier, A.: Mixing coverability and reachability to analyze vass with one zero-test. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 394–406. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Proceedings of the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification, Testing and Verification XV, pp. 3–18. Chapman & Hall, Ltd., London (1996)CrossRefGoogle Scholar
  12. 12.
    Habermehl, P.: On the complexity of the linear-time μ-calculus for petri nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 102–116. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Hack, M.: The equality problem for vector addition systems is undecidable. Theoretical Computer Science 2(1), 77–95 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982, pp. 267–281. ACM, New York (1982)CrossRefGoogle Scholar
  15. 15.
    Leroux, J.: The general vector addition system reachability problem by presburger inductive invariants. In: Symposium on Logic in Computer Science, pp. 4–13 (2009)Google Scholar
  16. 16.
    Leroux, J.: Vector addition system reachability problem: a short self-contained proof. SIGPLAN Not. 46, 307–316 (2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    Mayr, E.W.: An algorithm for the general petri net reachability problem. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC 1981, pp. 238–246. ACM, New York (1981)CrossRefGoogle Scholar
  18. 18.
    Reinhardt, K.: Reachability in petri nets with inhibitor arcs. Electronic Notes in Theoretical Computer Science 223, 239–264 (2008); Proceedings of the Second Workshop on Reachability Problems in Computational Models (RP 2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rémi Bonnet
    • 1
  1. 1.LSV, CNRS, ENS CachanFrance

Personalised recommendations