Autodoxastic Conditional Reasoning: The Monotonic Case

  • Haythem O. Ismail
  • Aya S. Mahfouz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6967)

Abstract

Ramsey’s test for conditionals seems to be in conflict with the so-called Thomason conditionals. A Thomason conditional is a conditional in which either the antecedent or the consequent is a statement about the reasoning agent’s own beliefs. Several authors have pointed out that resolving the apparent conflict is to be sought by abandoning the belief revision interpretation of the Ramsey test in favor of a suppositional interpretation. We formalize an AGM-style notion of supposition, showing that it is identical to revision for agents who are not autodoxastic—agents who do not reason about their beliefs. We present particular realizations of supposition in terms of revision and identify the relations between the conditionals supposition and revision give rise to.

Keywords

Function Symbol Belief Revision Algebraic Logic Context System Nonmonotonic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory. American Philosophical Quarterly, Monograph Series, vol. 2, pp. 98–112. Basil Blackwell Publishers, Oxford (1968)Google Scholar
  2. 2.
    Alchourron, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic 50(2), 510–530 (1985)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Nebel, B.: A knowledge level analysis of belief revision. In: Brachman, R., Levesque, H., Reiter, R. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the First International Conference (KR 1989), pp. 301–311. Morgan Kaufmann, Toronto (1989)Google Scholar
  4. 4.
    Williams, M.A.: Transmutations of knowledge systems. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR 1994), pp. 619–629. Morgan Kaufmann, San Francisco (1994)CrossRefGoogle Scholar
  5. 5.
    Gärdenfors, P.: Belief revisions and the Ramsey test for conditionals. The Philosophical Review 95(1), 81–93 (1986)CrossRefGoogle Scholar
  6. 6.
    Ismail, H.O.: A reason maintenance perspective on relevant Ramsey conditionals. Logic Journal of the IGPL 18(4), 508–529 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    van Fraassen, B.: Review of Brian Ellis, Relational belief systems. Canadian Journal of Philosophy 10(3), 497–511 (1980)CrossRefGoogle Scholar
  8. 8.
    Chalmers, D., Hájek, A.: Ramsey + Moore = God. Analysis 67, 170–172 (2007)Google Scholar
  9. 9.
    Barnett, D.: Ramsey + Moore ≠ God. Analysis 68, 168–174 (2008)MathSciNetGoogle Scholar
  10. 10.
    Willer, M.: New surprises for the Ramsey test. Synthese 176, 291–309 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Hannes, L.: God − Moore = Ramsey (a reply to Chalmers and Hájek). Topoi 30(1), 47–51 (2011)CrossRefMATHGoogle Scholar
  12. 12.
    Moore, R.C.: Semantical considerations on nonmonotonic logic. Artificial Intelligence 25, 75–94 (1985)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Perlis, D.: Languages with self-refernce I: Foundations. Artificial Intelligence 25, 301–322 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ismail, H.O.: Log A B: An algebraic logic of belief. In: Beierle, C., Kern-Isberner, G. (eds.) Proceedings of the Workshop on Relational Approaches to Knowledge Representation and Learning: Workshop of the 32nd German Conference on Artificial Intelligence, pp. 2–18 (2009)Google Scholar
  15. 15.
    Ismail, H.O.: Log A B: A first-order, non-paradoxical, algebraic logic of belief. Logic Journal of the IGPL (in Press)Google Scholar
  16. 16.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Heidelberg (1982)MATHGoogle Scholar
  17. 17.
    Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two Notions. Cornell University Press, Ithaca (1962)Google Scholar
  18. 18.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. The MIT Press, Cambridge (1995)MATHGoogle Scholar
  19. 19.
    Kaplan, D.: Quantifying in. Synthese 19, 178–214 (1968)CrossRefGoogle Scholar
  20. 20.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchial logics (or: How we can do without modal logics). Artficial Intelligence 65, 29–70 (1994)CrossRefMATHGoogle Scholar
  21. 21.
    Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and revising it. In: Principles of Knowledge Representation and Reasoning: Proceedings of the second International Conference (KR 1991), pp. 387–394 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Haythem O. Ismail
    • 1
  • Aya S. Mahfouz
    • 1
  1. 1.Department of Computer ScienceGerman UniversityCairoEgypt

Personalised recommendations