Scheduling Yard Cranes Considering Crane Interference

  • Ulf Speer
  • Gerlinde John
  • Kathrin Fischer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6971)

Abstract

Automated stacking cranes form the heart of modern container terminals. Hence, their productivity has a major influence on the performance of the terminal. In the first part of this paper, the yard crane scheduling problem and its practical relevance from the point of view of the Container Terminal Altenwerder (CTA) in Hamburg, Germany, is described. In Altenwerder, 26 yard blocks orthogonal to the quay with transfer areas at both ends of each block are operated with double rail mounted gantries (DRMG). In the second part of the paper, an outline of a new scheduling algorithm for yard cranes on this particular layout is given. The procedure minimizes delays for the jobs and the cycle times of the cranes. In addition to in-motion times also other parts of the cycle time, as waiting and blocking times resulting from other cranes, are taken into account in the scheduling approach. A branch and bound algorithm is used to create sequences of jobs for each crane. Using a simulation model, both the influence of the length of these sequences and the impact of technical breakdowns on the results are analysed. Finally, the results are verified with operational data and the applicability for practice at the CTA is evaluated.

Keywords

Container Terminal Automate Guide Vehicle Quay Crane Standard Scenario Crane System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dell, R.F., Royset, R.O., Zyngirdis, I.: Optimizing Container Movement using One and Two Automated Stacking Cranes. Journal of Industrial and Management Optimization 5, 285–302 (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Dorndorf, U., Schneider, F.: Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectrum 32(3), 593–615 (2010)CrossRefMATHGoogle Scholar
  3. 3.
    Eiselt, H.A., Sandblom, C.-L.: Decision Analysis, Location Models, and Scheduling Problems. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Hartmann, S.: A General Framework for Scheduling Equipment and Manpower at Container Terminals. OR Spectrum 26, 51–74 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hartmann, S.: Generating Scenarios for Simulation and Optimization of Container Terminal Logistics. OR Spectrum 26, 171–192 (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Javanshir, H., Seyedalizadeh Ganji, S.R.: Yard crane scheduling in port container terminals using genetic algorithm. Journal of Industrial Engineering International 6(11), 39–50 (2010)Google Scholar
  7. 7.
    John, G., Witte, I.: Acht Jahre CTA – Erfahrungen mit einem automatisierten Containerterminal. In: Jahrbuch der Hafentechnischen Gesellschaft, Projektierung, Bau und Betrieb von Containerterminals, vol. 56, pp. 103–113 (2010)Google Scholar
  8. 8.
    Kemme, N.: Effects of storage block layout and automated yard crane systems on the performance of seaport container terminals. OR Spectrum (2011); doi: 10.1007/s00291-011-0242-7Google Scholar
  9. 9.
    Linn, R.J., Zhang, C.Q.: A heuristic for dynamic yard crane deployment in a container terminal. IIE Transactions 35, 161–174 (2003)CrossRefGoogle Scholar
  10. 10.
    Mak, K.L., Sun, D.: A Scheduling Method for Cranes in a Container Yard with Inter-Crane Interference. In: Electronic Engineering and Computing Technology. LNEE, vol. 60, pp. 715–725 (2010)Google Scholar
  11. 11.
    Narasimhan, A., Palekar, U.S.: Analysis and algorithms for the transtainer routing problem in container port operations. Transportation Science 36, 63–78 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Park, T., Choe, R., Ok, S.M., Ryu, K.R.: Real-time scheduling for twin RMGs in an automated container yard. OR Spectrum 32(3), 593–615 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Petering, M.E.H., Murty, K.G.: Effect of block length and yard crane deployment systems on overall performance at a seaport container transshipment terminal. Computers & Operations Research 36(5), 1711–1725 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Petering, M.E.H., Wu, Y., Li, W., Goh, M., de Souza, R.: Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum 31, 801–835 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Saanen, Y.A.: An approach for designing robotized marine container terminals. Phd thesis, Technical University of Delft (2004)Google Scholar
  16. 16.
    Saanen, Y.A., Valkengoed, M.V., Kuhl, M.E., Steiger, N., Armstrong, F.B., Joines, J.A.: Comparison of three automated stacking alternatives by means of simulation. In: Proc. 2005 Winter Simulation Conf., pp. 1567–1576 (2005)Google Scholar
  17. 17.
    Stahlbock, R., Voß, S.: Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals. International Journal of Shipping and Transport Logistics 2(1), 95–123 (2010)CrossRefGoogle Scholar
  18. 18.
    Stahlbock, R., Voß, S.: Operations research at container terminals – a literature update. OR Spectrum 30, 1–52 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Steenken, D., Voß, S., Stahlbock, R.: Container terminal operations and operations research – a classification and literature review. OR Spectrum 26, 3–49 (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Vis, I.F.A., Carlo, H.J.: Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal. Transportation Science 44(2), 169–182 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ulf Speer
    • 1
  • Gerlinde John
    • 2
  • Kathrin Fischer
    • 3
  1. 1.Hamburger Hafen und Logistik AGHamburgGermany
  2. 2.HHLA Container-Terminal Altenwerder GmbHHamburgGermany
  3. 3.Institut für Quantitative Unternehmensforschung und WirtschaftsinformatikTechnische Universität Hamburg-HarburgHamburgGermany

Personalised recommendations