Game Theoretical Aspects in Modeling and Analyzing the Shipping Industry

  • Xiaoning Shi
  • Stefan Voß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6971)


The shipping industry is known for providing transport service in terms of deploying vessels and accessing ports, making shipping one of the network-based services. From the perspective of traditional as well as neo-economics, shipping is assumed to pursue profit maximization subject to scarce resources, e.g. capital, assets, seafarers, or binding constraints derived from schedules, etc. Players could be any of the following: linkage operators, e.g. liner shipping carriers, port operators, freight forwarders, customs, hinterland haulage carriers, inland navigation carriers, market regulators, etc. Taking into account interdependencies and inter-relations, game theory provides a meaningful way to model and analyze behaviors of the involved players. In this paper we provide a survey on game theoretical approaches within the shipping industry.


Nash Equilibrium Shipping Industry Congestion Game Liner Shipping Port Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso-Meijide, J., Casas-Mendez, B., Holler, M., Lorenzo-Freire, S.: Computing power indices: Multilinear extensions and new characterizations. European Journal of Operational Research 188, 540–554 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arrow, K.: The economics of agency. In: Pratt, J., Zeckhauser, R. (eds.) Principals and Agents: The Structure of Business, pp. 37–51. Harvard University Press, Cambridge (1985)Google Scholar
  3. 3.
    Banzhaf, J.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review 19, 317–343 (1965)Google Scholar
  4. 4.
    Bell, M.: A game theory approach to measuring the performance reliability of transport networks. Transportation Research B 34, 533–545 (2000)CrossRefGoogle Scholar
  5. 5.
    Bell, M., Cassir, C.: Risk-averse user equilibrium traffic assignment – An application of game theory. Transportation Research B 36, 671–681 (2001)CrossRefGoogle Scholar
  6. 6.
    Brooks, M.: Determinants of Shippers Choice of Container Carriers: A Study of Eastern Canadian Exporters. Ph.D thesis, Department of Maritime Studies and International Transport, University of Wales, College of Cardiff (1983)Google Scholar
  7. 7.
    Cachon, G., Netessine, S.: The economics of agency. In: Simchi-Levi, D., Wu, D., Shen, Z. (eds.) Handbook of Quantitative Supply Chain Analysis: Modeling in the eBusiness Era, pp. 37–51. Kluwer, Boston (2004)Google Scholar
  8. 8.
    Chawla, S., Roughgarden, T.: Bertrand competition in networks. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 70–82. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Das, T., Teng, B.: Between trust and control: Developing confidence in partner cooperation in alliances. Academy of Management Review 23, 491–512 (1998)Google Scholar
  10. 10.
    Deegan, J., Packel, E.: A new index of power for simple n-person games. International Journal of Game Theory 7, 113–123 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Douma, A., Schuur, P., Jagerman, R.: Degree of cooperativeness of terminals and the effect on the barge handling process. Tech. rep, University of Twente, Department of Operational Methods for Production and Logistics (2008)Google Scholar
  12. 12.
    Ercal, G., Izhak-Ratzin, R., Majumdar, R., Meyerson, A.: Frugal routing on wireless ad-hoc networks. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 133–144. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Espinosa, M., Rhee, C.: Efficient wage bargaining as a repeated game. Quarterly Journal of Economics 104, 565–588 (1989)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Evangelista, P., Morvillo, A.: Logistical integration and co-operative strategies in liner shipping: Some empirical evidence. International Journal of Maritime Economics 2(1), 1–16 (2000)CrossRefGoogle Scholar
  15. 15.
    Federal Maritime Commission (FMC), (last call June 30, 2011)
  16. 16.
    Fink, A.: Supply chain coordination by means of automated negotiations. In: Sprague, R. (ed.) Proceedings of the 37th Hawaii International Conference on System Sciences, pp. 234–248. IEEE, Piscataway (2004)Google Scholar
  17. 17.
    Fotakis, D.: Congestion games with linearly independent paths: Convergence time and price of anarchy. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 33–45. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Franz, T., Voß, S., Rölke, H.: Market-mechanisms for integrated container terminal management. In: Bertram, V. (ed.) Proc. of the 6th Inter. Conf. on Computer and IT Applications in the Maritime Industries, COMPIT 2007, Cortona, Italy, pp. 234–248, INSEAN (2007)Google Scholar
  19. 19.
    Fusillo, M.: Excess capacity and entry deterrence: The case of ocean liner shipping markets. Maritime Economics and Logistics 5, 100–115 (2003)CrossRefGoogle Scholar
  20. 20.
    Gardner, B., Marlow, P., Nair, R.: The economic regulation of liner shipping: The impact of US and EU regulation in US trades. In: Grammenos, C. (ed.) The Handbook of Maritime Economics and Business, pp. 327–345. Informa, London (2002)Google Scholar
  21. 21.
    Gibbons, R.: A Primer in Game Theory. Harvester Wheatsheaf, Hertfordshire (1992)zbMATHGoogle Scholar
  22. 22.
    Gomes, E., Lins, M.: Modelling undesirable outputs with zero sum gains data envelopment analysis models. Journal of the Operational Research Society 59, 616–623 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gross, J., Yellen, J.: Graph Theory and its Applications, 2nd edn. Taylor & Francis, Abington (2006)zbMATHGoogle Scholar
  24. 24.
    Harrigan, K.: Strategic alliances and partner asymmetries. In: Contractor, F., Lorange, P. (eds.) Cooperative Strategies in International Business-Joint Venture and Technology Partnerships Between Firms, pp. 205–226. Lexington Books, Lexington (2006)Google Scholar
  25. 25.
    Hellermann, R.: Capacity Options for Revenue Management. Springer, Berlin (2006)zbMATHGoogle Scholar
  26. 26.
    Henesey, L., Davidsson, P., Persson, J.: Agent based simulation architecture for evaluating operational policies in transshipping containers. In: Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196, pp. 73–85. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Henesey, L.: Multi-agent Systems for Container Terminal Management. Ph.D. thesis, Blekinge Institute of Technology, Karlshamn (2006)Google Scholar
  28. 28.
    Hoefer, M., Souza, A.: The influence of link restrictions on (random) selfish routing. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 22–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Holler, M.: Forming coalitions and measuring voting power. Political Studies 30, 262–271 (1982)CrossRefGoogle Scholar
  30. 30.
    Johnston, R.: On the measurement of power: Some reactions to laver. Environment and Planning A 10, 907–914 (1978)CrossRefGoogle Scholar
  31. 31.
    de Jong, G., Ben-Akiva, M.: A micro-simulation model of shipment size and transport chain choice. Transportation Research B 41, 950–965 (2007)CrossRefGoogle Scholar
  32. 32.
    Kaporis, A., Spirakis, P.: The price of optimum in Stackelberg games. In: Bichou, K., Bell, M., Evans, A. (eds.) Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 19–28 (2006)Google Scholar
  33. 33.
    Khouja, M.: The single-period (news-vendor) problem: Literature review and suggestions for future research. Omega 27, 537–553 (1999)CrossRefGoogle Scholar
  34. 34.
    Kim, J., Kwak, T.: Game theoretic analysis of the bargaining process over a long-term replenishment contract. Journal of the Operational Research Society 58, 769–778 (2007)CrossRefzbMATHGoogle Scholar
  35. 35.
    Konings, R.: Opportunities to improve container barge handling in the port of Rotterdam from a transport network perspective. Journal of Transport Geography 15, 443–454 (2007)CrossRefGoogle Scholar
  36. 36.
    Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.): Algorithmic Game Theory. LNCS, vol. 6386. Springer, Heidelberg (2010)Google Scholar
  37. 37.
    Krajewska, M., Kopfer, H.: Collaborating freight forwarding enterprises: Request allocation and profit sharing. OR Spectrum 28, 301–317 (2006)CrossRefzbMATHGoogle Scholar
  38. 38.
    Krajewska, M., Kopfer, H., Laporte, G., Ropke, S., Zaccour, G.: Horizontal cooperation among freight carriers: Request allocation and profit sharing. Journal of the Operational Research Society 59, 1483–1491 (2007)CrossRefzbMATHGoogle Scholar
  39. 39.
    Kreps, D.M., Wilson, R.: Sequential equilibria. Econometrica 50, 863–894 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lennon, C., Connel, J.M., Liang, K.Y.: A game-theoretic model for repeated assignment problem between two selfish agents. Journal of the Operational Research Society 59, 1652–1658 (2007)CrossRefGoogle Scholar
  41. 41.
    Liu, M., Akio, I.: An application of modified Shapley value to ocean shipping strategic alliances. Journal of Japan Institute of Navigation 113, 281–286 (2005)CrossRefGoogle Scholar
  42. 42.
    Matsumura, T., Shimizu, D.: Cournot and Bertrand in shipping models with circular markets. Regional Science 85, 585–598 (2006)CrossRefGoogle Scholar
  43. 43.
    Mavronicolas, M., Papadopoulou, V.G., Philippou, A., Spirakis, P.G.: Network game with attacker and protector entities. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 288–297. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  44. 44.
    Mavronicolas, M., Papadoupoulou, V., Spirakis, P.: Algorithmic Game Theory and Applications. Wiley, New York (2006)Google Scholar
  45. 45.
    Medda, F.: A game theory approach for the allocation of risks in transport public private partnerships. International Journal of Project Management 25, 213–218 (2004)CrossRefGoogle Scholar
  46. 46.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13, 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Min, H., Guo, Z.: The location of hub-seaports in the global supply chain network using a cooperative competition strategy. International Journal of Integrated Supply Management 1(1), 51–63 (2004)CrossRefGoogle Scholar
  48. 48.
    Moulin, H.: Game Theory for the Social Science. New York University Press (1944)Google Scholar
  49. 49.
    Nash, J.: Equilibrium Points in n-Person Games. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  50. 50.
    Phlips, L.: Competition Policy: A Game-Theoretic Perspective. Cambridge University Press, Cambridge (1944)zbMATHGoogle Scholar
  51. 51.
    Powell, J., Swart, J.: Scaling knowledge: How does knowledge accrue in systems? Journal of the Operational Research Society 59, 1633–1643 (2007)CrossRefzbMATHGoogle Scholar
  52. 52.
    Puerto, J., Schöbel, A., Schwarze, S.: The path player game – A network game from the point of view of the network providers. Mathematical Methods and Operations Research 68, 1–20 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Reinhardt, G., Dada, M.: Allocating the gains from resource pooling with the Shapley value. Journal of the Operational Research Society 56, 997–1000 (2005)CrossRefzbMATHGoogle Scholar
  54. 54.
    Rimmer, P.: Ocean liner shipping services: Corporate restructuring and port selection/competition. Asia Pacific Viewpoint 39(2), 193–208 (1998)CrossRefGoogle Scholar
  55. 55.
    Roughgarden, T.: Stackelberg scheduling strategies. SIAM Journal on Computing 33, 332–350 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Shapley, L.: A value of n-person games. Annals of Mathematics Studies 28, 307–317 (1953)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Shapley, L.: Cores of convex games. International Journal of Game Theory 1, 11–26 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Shapley, L., Shubik, M.: A method for evaluating the distribution of power in a committee system. American Political Science Review 48, 787–792 (1954)CrossRefGoogle Scholar
  59. 59.
    Shi, X., Meersman, H., Voß, S.: The win-win game in slot-chartering agreement among the liner competitors and collaborators. In: Bichou, K., Bell, M., Evans, A. (eds.) Proceedings of the IAME 2008 Conference Sustainability in International Shipping, Port and Logistics Industries and the China Factor, vol. 3, pp. D2/T2/S2–3, 1–26. IAME, Dalian (2008)Google Scholar
  60. 60.
    Shi, X., Voß, S.: Container terminal operations under the influence of shipping alliances. In: Bichou, K., Bell, M., Evans, A. (eds.) Risk Management in Port Operations, Logistics and Supply Chain Security, pp. 135–163. Informa, London (2007)Google Scholar
  61. 61.
    Shi, X., Voß, S.: Iterated cooperations and possible deviations among the liner shipping carriers based on non-cooperative game theory. Transportation Research Record 2066, 60–70 (2008)CrossRefGoogle Scholar
  62. 62.
    Sjostrom, W.: Collusion in ocean shipping: A test of monopoly and empty core models. The Journal of Political Economy 97(5), 1160–1179 (1989)CrossRefGoogle Scholar
  63. 63.
    Sjostrom, W.: Liner shipping: Modelling competition and collusion. In: Grammenos, C. (ed.) The Handbook of Maritime Economics and Business, pp. 307–326. Informa, London (2002)Google Scholar
  64. 64.
    Sjostrom, W.: Ocean shipping cartels: A survey. Review of Network Economics 3(2), 107–134 (2004)CrossRefGoogle Scholar
  65. 65.
    Slack, B., Comtois, C., McCalla, R.: Strategic alliances in the container shipping industry: A global perspective. Maritime Policy and Management 29, 65–75 (2002)CrossRefGoogle Scholar
  66. 66.
    Song, D., Panayides, P.: A conceptual application of cooperative game theory to liner shipping strategic alliances. Maritime Policy and Management 29, 285–301 (2002)CrossRefGoogle Scholar
  67. 67.
    Stahlbock, R., Voß, S.: Operations research at container terminals: a literature update. OR Spectrum 30, 1–52 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Talley, W.: Port Economics. Routledge, New York (2009)Google Scholar
  69. 69.
    Ting, S., Tzeng, G.: Ship scheduling and cost analysis for route planning in liner shipping. Maritime Economics & Logistics 5, 378–392 (2003)CrossRefGoogle Scholar
  70. 70.
    Tirole, J.: The Theory of Industrial Organization. MIT Press, Cambridge (1988)Google Scholar
  71. 71.
    Tsekeris, T., Voß, S.: Design and evaluation of road pricing: State-of-the-art and methodological advances. Netnomics 10, 5–52 (2009)CrossRefGoogle Scholar
  72. 72.
    Vernimmen, B., Dullaert, W., Engelen, S.: Schedule unreliability in liner shipping: Origins and consequences for the hinterland supply chain. Maritime Economics & Logistics 9, 193–213 (2007)CrossRefGoogle Scholar
  73. 73.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  74. 74.
    Wang, T., Panayides, P., Song, D.: Inter-organisational relations in liner shipping alliances as a co-operative game. Journal of the Eastern Asia Society for Transportation Studies 3(1), 247–262 (2001)Google Scholar
  75. 75.
    Wang, Y.: Strategic Gaming Analysis of Competitive Transportation Services. Ph.D thesis, Hong Kong University of Science and Technology (2004)Google Scholar
  76. 76.
    Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  77. 77.
    Xiao, F.: Game-Theoretic Models for Competitive Pricing and Network Design Problems. Ph.D thesis, Hong Kong University of Science and Technology (2007)Google Scholar
  78. 78.
    Zhao, J.: Estimating merging costs by merger preconditions. Theory and Decision 66, 373–399 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaoning Shi
    • 1
  • Stefan Voß
  1. 1.Shanghai Jiao Tong UniversityP.R. China

Personalised recommendations