Skip to main content

Multiobjective Evolutionary Algorithm for Redesigning Sales Territories

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6971)

Abstract

Redesigning sales territories is a strategic activity that seeks to improve customer’s service level, sales costs and the quality’s life of the salesmen to gain a competitive advantage in the market. In this paper we propose a multiobjective evolutionary algorithm for redesigning sales territories inspired by a company dedicated to sell products along Mexico. One objective seeks to minimize new turnover variation against the current ones of the salesmen. The other objective looks at compacting territories through minimizing the sum of the distance traveled of its salesmen. Each territory is restricted to a maximum workload and the conservation of the residence places of the salesmen in new territorial configurations. Through an evolutionary algorithm we seek to solve large instances that have not been solved by an exact method.

Keywords

  • Error Ratio
  • Sales Force
  • Multiobjective Evolutionary Algorithm
  • Maximum Workload
  • Zone Design

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-24264-9_14
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-24264-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bação, F., Lobo, V., Painho, M.: Applying genetic algorithms to zone design. Soft Computing 9, 341–348 (2006)

    CrossRef  Google Scholar 

  2. Bação, F., Painho, M.: A point approach to zone design. In: 5th AGILE Conference on Geographic Information Science, Palma, Balearic Islands, Spain (2002)

    Google Scholar 

  3. Bennett, D., Xiao, N., Armstrong, M.: Exploring the geographic consequences of public policies using evolutionary algorithms. Annals of the Association of American Geographers 94, 827–847 (2004)

    Google Scholar 

  4. Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Berlin (2007)

    MATH  Google Scholar 

  5. Correa, J., Ruvalcaba, L., Olivares-Benitez, E., Aguilar, J., Macias, J.: Biobjective model for redesign sales territories. In: 15th Annual International Conference on Industrial Engineering: Theory, Applications and Practice (IJIE), Mexico (2010)

    Google Scholar 

  6. Datta, D., Figueira, J., Fonseca, C. M., Fernando, T.P.: Graph partitioning through a multi-objective evolutionary algorithm: A preliminary study. In: Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, GA, pp. 625–632 (2008)

    Google Scholar 

  7. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5, 345 (1962)

    CrossRef  Google Scholar 

  8. Gentile, G., Tiddi, D.: Clustering methods for the automatic design of traffic zones. In: SIDT International Conference, Milan, Italy (2009)

    Google Scholar 

  9. Roji, G.: By Mexico’s highways (2010)

    Google Scholar 

  10. Guo, J., Trinidad, G., Smith, N.: MOZART: a multi-objective zoning and aggregation tool. In: Proceedings of the Philippine Computing Science Congress (PCSC), pp. 197–201 (2000)

    Google Scholar 

  11. Kalcsics, J., Nickel, S., Schröder, M.: Towards a unified territory design approach - applications: Algorithms and GIS integration. Fraunhofer ITWM, Kaiserslautern (2005)

    MATH  Google Scholar 

  12. Ricca, F.: A multicriteria districting heuristic for the aggregation of zones and its use in computing origin-destination matrices. INFOR 42(1), 61–77 (2004)

    MathSciNet  Google Scholar 

  13. Ricca, F., Simeone, B.: Local search algorithms for political districting. European Journal of Operational Research 189, 1409–1426 (2008)

    CrossRef  MATH  Google Scholar 

  14. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Salazar-Aguilar, M.A., Ríos-Mercado, R.Z., González-Velarde, J.L.: GRASP strategies for a bi-objective commercial territory design problem. Journal of Heuristics (2011); doi:10.1007/s10732-011-9160-8

    Google Scholar 

  16. Secretaría de Comunicaciones y Transportes / Communications and Transportation Secretary, http://www.sct.gob.mx/carreteras/ , last call (July 15, 2011)

  17. Takashi, K.: Designing elementary school districts using a genetic algorithm: Case study of Suita City, Osaka. Geographical Review of Japan 79(4), 154–171 (2006)

    CrossRef  Google Scholar 

  18. Tavares-Pereira, F., Figueira, J., Mousseau, V., Roy, B.: Multiple criteria districting problems. The public transportation network pricing system of the Paris region. Annals of Operations Research 154, 69–92 (2007)

    MATH  Google Scholar 

  19. Wei, B.C., Chai, W.Y.: A multiobjective hybrid metaheuristic approach for GIS-based spatial zone model. Journal of Mathematical Modelling and Algorithms 3, 245–261 (2006)

    CrossRef  MATH  Google Scholar 

  20. Xiao, N.: A unified conceptual framework for geographical optimization using evolutionary algorithms. Annals of the Association of American Geographers 98, 795–817 (2008)

    CrossRef  Google Scholar 

  21. Zäpfel, G., Braune, R., Bögl, M.: Metaheuristic Search Concepts: A Tutorial with applications to Production and Logistics. Springer, Berlin (2010)

    CrossRef  Google Scholar 

  22. Zoltners, A.: A unified approach to sales territory alignment. In: Sales Management: New Developments from Behavioral and Decision Model Research, pp. 360–376. Marketing Science Institute, Cambridge (1979)

    Google Scholar 

  23. Zoltners, A., Sinha, P.: Sales territory alignment: A review and model. Management Science 29, 1237–1256 (1983)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruvalcaba, L., Correa, G., Zanella, V. (2011). Multiobjective Evolutionary Algorithm for Redesigning Sales Territories. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds) Computational Logistics. ICCL 2011. Lecture Notes in Computer Science, vol 6971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24264-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24264-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24263-2

  • Online ISBN: 978-3-642-24264-9

  • eBook Packages: Computer ScienceComputer Science (R0)