Multiobjective Evolutionary Algorithm for Redesigning Sales Territories

  • Loecelia Ruvalcaba
  • Gabriel Correa
  • Vittorio Zanella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6971)


Redesigning sales territories is a strategic activity that seeks to improve customer’s service level, sales costs and the quality’s life of the salesmen to gain a competitive advantage in the market. In this paper we propose a multiobjective evolutionary algorithm for redesigning sales territories inspired by a company dedicated to sell products along Mexico. One objective seeks to minimize new turnover variation against the current ones of the salesmen. The other objective looks at compacting territories through minimizing the sum of the distance traveled of its salesmen. Each territory is restricted to a maximum workload and the conservation of the residence places of the salesmen in new territorial configurations. Through an evolutionary algorithm we seek to solve large instances that have not been solved by an exact method.


Error Ratio Sales Force Multiobjective Evolutionary Algorithm Maximum Workload Zone Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bação, F., Lobo, V., Painho, M.: Applying genetic algorithms to zone design. Soft Computing 9, 341–348 (2006)CrossRefGoogle Scholar
  2. 2.
    Bação, F., Painho, M.: A point approach to zone design. In: 5th AGILE Conference on Geographic Information Science, Palma, Balearic Islands, Spain (2002)Google Scholar
  3. 3.
    Bennett, D., Xiao, N., Armstrong, M.: Exploring the geographic consequences of public policies using evolutionary algorithms. Annals of the Association of American Geographers 94, 827–847 (2004)Google Scholar
  4. 4.
    Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Berlin (2007)zbMATHGoogle Scholar
  5. 5.
    Correa, J., Ruvalcaba, L., Olivares-Benitez, E., Aguilar, J., Macias, J.: Biobjective model for redesign sales territories. In: 15th Annual International Conference on Industrial Engineering: Theory, Applications and Practice (IJIE), Mexico (2010)Google Scholar
  6. 6.
    Datta, D., Figueira, J., Fonseca, C. M., Fernando, T.P.: Graph partitioning through a multi-objective evolutionary algorithm: A preliminary study. In: Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, GA, pp. 625–632 (2008)Google Scholar
  7. 7.
    Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5, 345 (1962)CrossRefGoogle Scholar
  8. 8.
    Gentile, G., Tiddi, D.: Clustering methods for the automatic design of traffic zones. In: SIDT International Conference, Milan, Italy (2009)Google Scholar
  9. 9.
    Roji, G.: By Mexico’s highways (2010)Google Scholar
  10. 10.
    Guo, J., Trinidad, G., Smith, N.: MOZART: a multi-objective zoning and aggregation tool. In: Proceedings of the Philippine Computing Science Congress (PCSC), pp. 197–201 (2000)Google Scholar
  11. 11.
    Kalcsics, J., Nickel, S., Schröder, M.: Towards a unified territory design approach - applications: Algorithms and GIS integration. Fraunhofer ITWM, Kaiserslautern (2005)zbMATHGoogle Scholar
  12. 12.
    Ricca, F.: A multicriteria districting heuristic for the aggregation of zones and its use in computing origin-destination matrices. INFOR 42(1), 61–77 (2004)MathSciNetGoogle Scholar
  13. 13.
    Ricca, F., Simeone, B.: Local search algorithms for political districting. European Journal of Operational Research 189, 1409–1426 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  15. 15.
    Salazar-Aguilar, M.A., Ríos-Mercado, R.Z., González-Velarde, J.L.: GRASP strategies for a bi-objective commercial territory design problem. Journal of Heuristics (2011); doi:10.1007/s10732-011-9160-8Google Scholar
  16. 16.
    Secretaría de Comunicaciones y Transportes / Communications and Transportation Secretary,, last call (July 15, 2011)
  17. 17.
    Takashi, K.: Designing elementary school districts using a genetic algorithm: Case study of Suita City, Osaka. Geographical Review of Japan 79(4), 154–171 (2006)CrossRefGoogle Scholar
  18. 18.
    Tavares-Pereira, F., Figueira, J., Mousseau, V., Roy, B.: Multiple criteria districting problems. The public transportation network pricing system of the Paris region. Annals of Operations Research 154, 69–92 (2007)zbMATHGoogle Scholar
  19. 19.
    Wei, B.C., Chai, W.Y.: A multiobjective hybrid metaheuristic approach for GIS-based spatial zone model. Journal of Mathematical Modelling and Algorithms 3, 245–261 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Xiao, N.: A unified conceptual framework for geographical optimization using evolutionary algorithms. Annals of the Association of American Geographers 98, 795–817 (2008)CrossRefGoogle Scholar
  21. 21.
    Zäpfel, G., Braune, R., Bögl, M.: Metaheuristic Search Concepts: A Tutorial with applications to Production and Logistics. Springer, Berlin (2010)CrossRefGoogle Scholar
  22. 22.
    Zoltners, A.: A unified approach to sales territory alignment. In: Sales Management: New Developments from Behavioral and Decision Model Research, pp. 360–376. Marketing Science Institute, Cambridge (1979)Google Scholar
  23. 23.
    Zoltners, A., Sinha, P.: Sales territory alignment: A review and model. Management Science 29, 1237–1256 (1983)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Loecelia Ruvalcaba
    • 1
  • Gabriel Correa
    • 1
  • Vittorio Zanella
    • 2
  1. 1.Depto. de Sistemas de InformaciónUniversidad Autónoma de AguascalientesAguascalientes, Ags.México
  2. 2.UPAEPPueblaMéxico

Personalised recommendations