Advertisement

Combinatorial Auctions in Freight Logistics

  • Heiner Ackermann
  • Hendrik Ewe
  • Herbert Kopfer
  • Karl-Heinz Küfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6971)

Abstract

Freight business is a huge market with strong competition. In many companies, planning and routing software has been introduced, and optimization potentials have been widely exploited. To further improve efficiency, especially the small and medium sized carriers have to cooperate beyond enterprise boundaries. A promising approach to exchange transportation requests between freight carriers is provided by combinatorial auctions and exchanges. They allow bundles of items to be traded, thereby allowing participants to express complex synergies.

In this paper we discuss various goals for a combinatorial request exchange in freight logistics and provide the reasoning for our design decisions. All goals aim to improve usefulness in a practical environment of less-than-truckload (LTL) carriers. We provide experimental results for both generated and real-life data that show significant savings and are often close to a heuristic solution for the global optimization problem. We study how bundling and restricting the number of submitted bids affect the solution quality.

Keywords

Global Optimization Problem Combinatorial Auction Winner Determination Problem Transportation Request Bidding Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrache, J., Crainic, T., Gendreau, M., Rekik, M.: Combinatorial auctions. Annals of Operations Research 153(1), 131–164 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ackermann, H., Ewe, H., Küfer, K.H., Schröder, M.: Modeling profit sharing in combinatorial exchanges by network flows. Tech. Rep. 205, Fraunhofer Institute for Industrial Mathematics (2011), http://www.itwm.fraunhofer.de/en/press-and-media/reports-of-the-itwm.html
  3. 3.
    An, N., Elmaghraby, W., Keskinocak, P.: Bidding strategies and their impact on revenues in combinatorial auctions. Journal of Revenue and Pricing Management 3(4), 337–357 (2005)CrossRefGoogle Scholar
  4. 4.
    Clarke, E.H.: Multipart pricing of public goods. Publ. Choice 18, 19 (1971)Google Scholar
  5. 5.
    Conen, W., Sandholm, T.: Preference elicitation in combinatorial auctions. In: EC 2001: Proceedings of the 3rd ACM conference on Electronic Commerce, pp. 256–259. ACM, New York (2001)Google Scholar
  6. 6.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  7. 7.
    Day, R.W.: Expressing preferences with price-vector agents in combinatorial auctions. Ph.D. thesis, University of Maryland (2004)Google Scholar
  8. 8.
    DSLV Deutscher Speditions- und Logistikverband e.V.: Zahlen, Daten, Fakten aus Spedition und Logistik (May 2010)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (January 1979)Google Scholar
  10. 10.
    Goossens, D., Spieksma, F.: The matrix bid auction: micro-economic properties and expressiveness. Tech. Rep. urn:hdl:123456789/120980, Katholieke Universiteit Leuven (2006), http://ideas.repec.org/p/ner/leuven/urnhdl123456789-120980.html
  11. 11.
    Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gujo, O., Schwind, M., Vykoukal, J., Weiß, K., Stockheim, T., Wendt, O.: ComEx: Kombinatorische Auktionen zum innerbetrieblichen Austausch von Logistikdienstleistungen. Wirtschaftsinformatik (1), 201–218 (2007)Google Scholar
  13. 13.
    Hsieh, F.S.: Combinatorial reverse auction based on revelation of lagrangian multipliers. Decision Support Systems 48(2), 323–330 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Krajewska, M.A., Kopfer, H.: Collaborating freight forwarding enterprises. OR Spectrum 28(3), 301–317 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lee, C.G., Kwon, R.H., Ma, Z.: A carrier’s optimal bid generation problem in combinatorial auctions for transportation procurement. Transportation Research Part E: Logistics and Transportation Review 43(2), 173–191 (2007)CrossRefGoogle Scholar
  16. 16.
    Moulin, H.: Fair division and collective welfare. MIT Press, Cambr (2003)Google Scholar
  17. 17.
    Myerson, R.B., Satterthwaite, M.A.: Efficient mechanisms for bilateral trading. Journal of Economic Theory 29(2), 265–281 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nisan, N.: Bidding and allocation in combinatorial auctions. ACM Conference on Electronic Commerce, 1–12 (2000)Google Scholar
  19. 19.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pan, M., Chen, F., Yin, X., Fang, Y.: Fair profit allocation in the spectrum auction using the Shapley value. In: Proc. of the 28th IEEE Conf. GLOBECOM 2009, pp. 4028–4033. IEEE Press, USA (2009)Google Scholar
  21. 21.
    Parkes, D.C., Kalagnanam, J., Eso, M.: Achieving budget-balance with vickrey-based payment schemes in combinatorial exchanges. Tech. rep., IBM Research Report RC 22218 (2001); updated (March 2002)Google Scholar
  22. 22.
    Plummer, C.L.: Bidder Response to Combinatorial Auctions in Truckload Procurement. Master’s thesis, Massachusetts Institute of Technology (2003)Google Scholar
  23. 23.
    Rassenti, S.: 0-1 Decision Problems with Multiple Resource Constraints: Algorithms and Applications. Ph.D. thesis, University of Arizona (1981)Google Scholar
  24. 24.
    Schwind, M., Gujo, O., Vykoukal, J.: A combinatorial intra-enterprise exchange for logistics services. Inf. Syst. E-Business Mngmnt. 7(4), 447–471 (2009)CrossRefGoogle Scholar
  25. 25.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A. (eds.) Contributions to the Theory of Games II, Annals of Mathematical Studies, vol. 28, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  26. 26.
    Tsung-Sheng, C.: Decision support for truckload carriers in one-shot combinatorial auctions. Transport. Research Part B: Methodological 43(5), 522–541 (2009)CrossRefGoogle Scholar
  27. 27.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance 16(1), 8–37 (1961)MathSciNetCrossRefGoogle Scholar
  28. 28.
    de Vries, S., Vohra, R.V.: Combinatorial auctions. INFORMS J. Comput. 15(3), 284–309 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, X., Xia, M.: Combinatorial bid generation problem for transportation service procurement. Transportation Research Record: Journal of the Transportation Research Board (1923), 189–198 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Heiner Ackermann
    • 1
  • Hendrik Ewe
    • 1
  • Herbert Kopfer
    • 2
  • Karl-Heinz Küfer
    • 1
  1. 1.Fraunhofer ITWMKaiserslauternGermany
  2. 2.Chair of Logistics, University BremenGermany

Personalised recommendations