Skip to main content

Superfluidity and Hydrodynamic Topological Excitations of Microcavity Polaritons

  • Chapter
  • First Online:
Exciton Polaritons in Microcavities

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 172))

  • 2237 Accesses

Abstract

Bosonic condensates subject to interactions may give rise to the phenomenon of superfluidity. This is the case of polaritons in semiconductor microcavities, in which superfluidity is manifested in a number of effects like the frictionless flow, persistence of currents, or the quantisation of the angular momentum of the fluid. The dissipative nature of polaritons, determined by their finite lifetime, results in specific properties diverting notably from equilibrium systems like Bose–Einstein condensates of alkali atoms. In the first part of this chapter we describe the superfluidity of polaritons attending to the propagation characteristics of these gases in the presence of a potential barrier. We concentrate our analysis on the body of available experimental results, which can be well understood in terms of the shape of the spectra of excitations. We devote the second part of the chapter to the conditions for the break up of superfluidity via the nucleation of hydrodynamic topological excitations, i.e. quantised vortex pairs and solitons. We discuss how the out-of-equilibrium nature of polariton condensates favours the nucleation of these excitations, opening the way to novel turbulent regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Leggett, Superfluidity. Rev. Mod. Phys. 71, S318 (1999)

    Article  Google Scholar 

  2. W.F. Vinen, The detection of single quanta of circulation in liquid helium II. Proc. R. Soc. Lond. A 260, 218 (1961)

    Article  ADS  Google Scholar 

  3. G.B. Hess, W.M. Fairbank, Measurements of angular momentum in superfluid helium. Phys. Rev. Lett. 19, 216 (1967)

    Article  ADS  Google Scholar 

  4. R.E. Packard, T.M. Sanders, Observations on single vortex lines in rotating superfluid helium. Phys. Rev. A 6, 799 (1972)

    Article  ADS  Google Scholar 

  5. F. Chevy, K.W. Madison, J. Dalibard, Measurement of the angular momentum of a rotating Bose–Einstein condensate. Phys. Rev. Lett. 85, 2223 (2000)

    Article  ADS  Google Scholar 

  6. K.W. Madison, F. Chevy, W. Wohlleben et al., Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  7. J.R. Abo-Shaeer, C. Raman, J.M. Vogels et al., Observation of vortex lattices in Bose–Einstein condensates. Science 292, 476 (2001)

    Article  ADS  Google Scholar 

  8. D.R. Allum, P.V.E. McClintock, A. Phillips et al., The breakdown of superfluidity in liquid 4He: an experimental test of Landau’s theory. Phil. Trans. R. Soc. Lond. A 284, 179 (1977)

    Article  ADS  Google Scholar 

  9. M. Hartmann, F. Mielke, J.P. Toennies et al., Direct spectroscopic observation of elementary excitations in superfluid He droplets. Phys. Rev. Lett. 76, 4560 (1996)

    Article  ADS  Google Scholar 

  10. C. Raman, M. Köhl, R. Onofrio et al., Evidence for a critical velocity in a Bose–Einstein condensed gas. Phys. Rev. Lett. 83, 2502 (1999)

    Article  ADS  Google Scholar 

  11. R. Onofrio, C. Raman, J.M. Vogels et al., Observation of superfluid flow in a Bose–Einstein condensed gas. Phys. Rev. Lett. 85, 2228 (2000)

    Article  ADS  Google Scholar 

  12. I. Carusotto, S.X. Hu, L.A. Collins et al., Bogoliubov–Cerenkov radiation in a Bose–Einstein condensate flowing against an obstacle. Phys. Rev. Lett. 97, 260403 (2006)

    Article  ADS  Google Scholar 

  13. S.C. Whitmore, W. Zimmermann, Observation of quantized circulation in superfluid helium. Phys. Rev. 166, 181 (1968)

    Article  ADS  Google Scholar 

  14. C. Ryu, M.F. Andersen, P. Clade et al., Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007)

    Article  ADS  Google Scholar 

  15. T. Frisch, Y. Pomeau, S. Rica, Transition to dissipation in a model of superflow. Phys. Rev. Lett. 69, 1644 (1992)

    Article  ADS  Google Scholar 

  16. G.A. El, A. Gammal, A.M. Kamchatnov, Oblique dark solitons in supersonic flow of a Bose–Einstein condensate. Phys. Rev. Lett. 97, 180405 (2006)

    Article  ADS  Google Scholar 

  17. T. Winiecki, B. Jackson, J.F. McCann et al., Vortex shedding and drag in dilute Bose–Einstein condensates. J. Phys. B: At. Mol. Opt. Phys. 33, 4069 (2000)

    Article  ADS  Google Scholar 

  18. S. Inouye, S. Gupta, T. Rosenband et al., Observation of vortex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001)

    Article  ADS  Google Scholar 

  19. T.W. Neely, E.C. Samson, A.S. Bradley et al., Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010)

    Article  ADS  Google Scholar 

  20. J. Kasprzak, M. Richard, S. Kundermann et al., Bose–Einstein condensation of exciton polaritons. Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  21. K.G. Lagoudakis, M. Wouters, M. Richard et al., Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706 (2008)

    Article  Google Scholar 

  22. K.G. Lagoudakis, T. Ostatnicky, A.V. Kavokin et al., Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974 (2009)

    Article  ADS  Google Scholar 

  23. C.W. Lai, N.Y. Kim, S. Utsunomiya et al., Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529 (2007)

    Article  ADS  Google Scholar 

  24. E. Wertz, L. Ferrier, D.D. Solnyshkov et al., Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860 (2010)

    Article  Google Scholar 

  25. M. Wouters, I. Carusotto, Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime. Phys. Rev. A 76, 043807 (2007)

    Article  ADS  Google Scholar 

  26. D. Ballarini, D. Sanvitto, A. Amo et al., Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold. Phys. Rev. Lett. 102, 056402 (2009)

    Article  ADS  Google Scholar 

  27. D. Sanvitto, F.M. Marchetti, M.H. Szymanska et al., Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527 (2010)

    Article  Google Scholar 

  28. F.M. Marchetti, M.H. Szymanacuteska, C. Tejedor et al., Spontaneous and triggered vortices in polariton optical-parametric-oscillator superfluids. Phys. Rev. Lett. 105, 063902 (2010)

    Article  ADS  Google Scholar 

  29. M. Wouters, I. Carusotto, Superfluidity and critical velocities in nonequilibrium Bose–Einstein condensates. Phys. Rev. Lett. 105, 020602 (2010)

    Article  ADS  Google Scholar 

  30. I. Carusotto, C. Ciuti, Probing microcavity polariton superfluidity through resonant rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004)

    Article  ADS  Google Scholar 

  31. A. Amo, D. Sanvitto, F.P. Laussy et al., Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291 (2009)

    Article  ADS  Google Scholar 

  32. A. Amo, J. Lefrère, S. Pigeon et al., Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805 (2009)

    Article  Google Scholar 

  33. G. Nardin, G. Grosso, Y. Leger et al., Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635 (2011)

    Article  Google Scholar 

  34. D. Sanvitto, S. Pigeon, A. Amo et al., All-optical control of the quantum flow of a polariton superfluid. Nat. Phot. 5, 610 (2011)

    Article  Google Scholar 

  35. S. Pigeon, I. Carusotto, C. Ciuti, Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 144513 (2011)

    Article  ADS  Google Scholar 

  36. A. Amo, S. Pigeon, D. Sanvitto et al., Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167 (2011)

    Article  ADS  Google Scholar 

  37. C. Ciuti, I. Carusotto, Quantum fluid effects and parametric instabilities in microcavities. Phys. Status Solid B 242, 2224 (2005)

    Article  ADS  Google Scholar 

  38. M.H. Szymanska, J. Keeling, P.B. Littlewood, Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006)

    Article  ADS  Google Scholar 

  39. J. Keeling, F.M. Marchetti, M.H. Szymanska et al., Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1 (2007)

    Article  ADS  Google Scholar 

  40. M. Wouters, I. Carusotto, Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007)

    Article  ADS  Google Scholar 

  41. J. Keeling, N.G. Berloff, Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett. 100, 250401 (2008)

    Article  ADS  Google Scholar 

  42. N.G. Berloff, Turbulence in exciton–polariton condensates (2010), arXiv:1010.5225

    Google Scholar 

  43. J. Cuevas, A.S. Rodrigues, R. Carretero-Gonzalez et al., Nonlinear excitations, stability inversions and dissipative dynamics in quasi-one-dimensional polariton condensates Phys. Rev. B: Condens Matter Mater. Phys. 83, 245140 (2011).

    Article  ADS  Google Scholar 

  44. D.D. Solnyshkov, H. Flayac, G. Malpuech, Black holes and wormholes in spinor polariton condensates (2011), arXiv:1104.3013v1

    Google Scholar 

  45. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  46. J. Steinhauer, R. Ozeri, N. Katz et al., Excitation spectrum of a Bose–Einstein condensate. Phys. Rev. Lett. 88, 120407 (2002)

    Article  ADS  Google Scholar 

  47. S. Utsunomiya, L. Tian, G. Roumpos et al., Observation of Bogoliubov excitations in exciton–polariton condensates. Nat. Phys. 4, 700 (2008)

    Article  Google Scholar 

  48. V. Kohnle, Y. Léger, M. Wouters et al., From single particle to superfuid excitations in a dissipative polariton gas (2011), arXiv:1103.1488v1

    Google Scholar 

  49. E. Cancellieri, F.M. Marchetti, M.H. Szymanska et al., Superflow of resonantly driven polaritons against a defect. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 224512 (2010)

    Article  ADS  Google Scholar 

  50. R.Y. Chiao, J. Boyce, Bogoliubov dispersion relation and the possibility of superfluidity for weakly interacting photons in a two-dimensional photon fluid. Phys. Rev. A 60, 4114 (1999)

    Article  ADS  Google Scholar 

  51. E.L. Bolda, R.Y. Chiao, W.H. Zurek, Dissipative optical flow in a nonlinear Fabry–Pérot cavity. Phys. Rev. Lett. 86, 416 (2001)

    Article  ADS  Google Scholar 

  52. P. Leboeuf, S. Moulieras, Superfluid motion of light. Phys. Rev. Lett. 105, 163904 (2010)

    Article  ADS  Google Scholar 

  53. D. Sanvitto, D.M. Whittaker, M.S. Skolnick et al., Continuous wave pump–probe experiment on a planar microcavity. Phys. Status Solid A 202, 353 (2005)

    Article  ADS  Google Scholar 

  54. P. Nozieres, D. Pines, Theory of Quantum Liquids (Westview Press, Boulder, CO, USA, 1999)

    Google Scholar 

  55. D.N. Krizhanovskii, D.M. Whittaker, R.A. Bradley et al., Effect of interactions on vortices in a nonequilibrium polariton condensate. Phys. Rev. Lett. 104, 126402 (2010)

    Article  ADS  Google Scholar 

  56. M. Wouters, V. Savona, Superfluidity of a nonequilibrium Bose–Einstein condensate of polaritons. Phys. Rev. B: Condens Matter Mater. Phys. 81, 054508 (2010)

    Article  ADS  Google Scholar 

  57. T. Tsuzuki, Nonlinear waves in the Pitaevskii–Gross equation. J. Low Temp. Phys. 4, 441 (1971)

    Article  ADS  Google Scholar 

  58. F. Dalfovo, S. Giorgini, L.P. Pitaevskii et al., Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 LP (1999)

    Google Scholar 

  59. A.D. Jackson, G.M. Kavoulakis, C.J. Pethick, Solitary waves in clouds of Bose–Einstein condensed atoms. Phys. Rev. A 58, 2417 (1998)

    Article  ADS  Google Scholar 

  60. S. Burger, K. Bongs, S. Dettmer et al., Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198 (1999)

    Article  ADS  Google Scholar 

  61. J. Denschlag, J.E. Simsarian, D.L. Feder et al., Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97 (2000)

    Article  ADS  Google Scholar 

  62. Y.S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications. Phys. Rep. 298, 81 (1998)

    Article  ADS  Google Scholar 

  63. D.E. Pelinovsky, Y.A. Stepanyants, Y.S. Kivshar, Self-focusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51, 5016 LP (1995)

    Google Scholar 

  64. E.A. Kuznetsov, S.K. Turitsyn, Instability and collapse of solitons in media with a defocusing nonlinearity. Sov. Phys. JETP 67, 1583 (1988)

    MathSciNet  Google Scholar 

  65. Z. Dutton, M. Budde, C. Slowe et al., Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate. Science 293, 663 (2001)

    Article  ADS  Google Scholar 

  66. A.M. Kamchatnov, L.P. Pitaevskii, Stabilization of solitons generated by a supersonic flow of Bose–Einstein condensate past an obstacle. Phys. Rev. Lett. 100, 160402 (2008)

    Article  ADS  Google Scholar 

  67. A.M. Kamchatnov, S.V. Korneev, Condition for convective instability of dark solitons Phys. Lett. A 375, 2577 (2011)

    Article  ADS  Google Scholar 

  68. J. Keeling, N.G. Berloff, Controllable half-vortex lattices in an incoherently pumped polariton condensate (2011), arXiv:1102.5302v1

    Google Scholar 

  69. A. Amo, S. Pigeon, C. Adrados et al., Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B: Condens Matter Mater. Phys. 82, 081301 (2010)

    Article  ADS  Google Scholar 

  70. Y.G. Rubo, Half vortices in exciton polariton condensates. Phys. Rev. Lett. 99, 106401 (2007)

    Article  ADS  Google Scholar 

  71. H. Flayac, D.D. Solnyshkov, G. Malpuech, Oblique half-solitons and their generation in exciton–polariton condensates. Phys. Rev. B: Condens Matter Mater. Phys. 83, 193305 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amo, A., Bramati, A. (2012). Superfluidity and Hydrodynamic Topological Excitations of Microcavity Polaritons. In: Timofeev, V., Sanvitto, D. (eds) Exciton Polaritons in Microcavities. Springer Series in Solid-State Sciences, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24186-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24186-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24185-7

  • Online ISBN: 978-3-642-24186-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics