Advertisement

The Berezinskii–Kosterlitz–Thouless Phase Transition in Exciton–Polariton Condensates

  • Georgios Roumpos
  • Yoshihisa Yamamoto
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 172)

Abstract

In a homogeneous two-dimensional system at nonzero temperature, although there can be no ordering of infinite range, a superfluid phase is expected to occur for a Bose particle system. Theory predicts that, in this phase, the correlation function decays with distance as a power law, and quantum vortices are bound to antivortices to form molecular-like pairs. We study the relevance of this theory to microcavity exciton polaritons. These are two-dimensional bosonic quasiparticles formed as a superposition of a microcavity photon and a semiconductor quantum well exciton and have been shown to condense at high enough densities. Because of the short lifetime, full equilibrium is not established, but we instead probe the steady state of the system, in which particles are continuously injected from a pumping reservoir. We create a large exciton–polariton condensate and employ a Michelson interferometer setup to characterize the short- and long-distance behavior of the first-order spatial correlation function. Our experimental results show distinct features of the two-dimensional and nonequilibrium characters of the condensate. We find that the Gaussian short-distance decay is followed by a power-law decay at longer distances, as expected for a two-dimensional condensate. The exponent of the power law is measured in the range 0.9–1.2, larger than is possible in equilibrium. We compare the experimental results to a theoretical model to understand the features and to clarify the influence of external noise on spatial coherence in nonequilibrium phase transitions. Our results indicate that the Berezinskii–Kosterlitz–Thouless (BKT)-like phase order survives in open dissipative systems. We also present our observation of a single vortex–antivortex pair in a condensate of the appropriate size. Pairs are generated due to pump noise and are formed sequentially at the same point due to the inhomogeneous pumping spot profile. They are revealed in the time-integrated phase maps acquired using Michelson interferometry. Our results suggest that vortex–antivortex pairs can be created in a two-dimensional condensate without rotation or stirring. The observed correlated motion of a vortex and antivortex imply that vortex–antivortex pairs do not dissociate, which is consistent with the BKT theoretical prediction as well as with our observation of a power-law decay of the spatial correlation function.

Keywords

Vortex Line Vortex Pair Single Vortex Free Vortex Healing Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to acknowledge the contributions of our colleagues. M. Fraser performed numerical calculations using the open-dissipative Gross–Pitaevskii equation in Sect. 4.5. J. Keeling, M. Szymańska, and P. Littelwood developed the nonequilibrium theoretical model outlined in Sect. 4.4, and adapted it to the current experimental situation. Finally, A. Löffler, C. Schneider, S. Höfling, and A. Forchel provided the microcavity sample. This work is supported by the FIRST program of the JSPS.

References

  1. 1.
    A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitzungber. Preuss. Akad. Wiss. 1, 3–14 (1925)Google Scholar
  2. 2.
    F. London, The λ-phenomenon of Liquid Helium and the Bose-Einstein Degeneracy. Nature 141(3571), 643 (1938)Google Scholar
  3. 3.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969–3973 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80(3), 885–964 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, Polariton lasing vs. photon lasing in a semiconductor microcavity. PNAS 100, 15318–15323 (2003)Google Scholar
  7. 7.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, et al., Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)Google Scholar
  8. 8.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, et al., Coherent zero-state and π-state in an exciton polariton condensate array. Nature 450, 529–532 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010)Google Scholar
  11. 11.
    P.C. Hohenberg, Existence of long-range order in one and two dimensions. Phys. Rev. 158(2), 383–386 (1967)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6(7), 1181–1203 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971)Google Scholar
  14. 14.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, 2003).Google Scholar
  15. 15.
    A.J. Leggett, Quantum Liquids (Oxford University Press, Oxford, 2006)CrossRefGoogle Scholar
  16. 16.
    L.D. Landau, The theory of superfluidity of Helium II. J. Phys. USSR 5, 71 (1941)Google Scholar
  17. 17.
    A.J. Leggett, Superfluidity. Rev. Mod. Phys. 71(2), S318–S323 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University press, Cambridge, 1991)Google Scholar
  19. 19.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases. 2nd edn. (Cambridge University press, Cambridge, 2008)Google Scholar
  20. 20.
    A.L. Fetter, A.A. Svidzinsky, Vortices in a trapped dilute Bose-Einstein condensate. J. Phys.: Condens. Matter 13(12), R135 (2001)Google Scholar
  21. 21.
    A.L. Fetter, Vortices and dynamics in trapped Bose-Einstein condensates. J. Low Temp. Phys. 1–15 (2010)Google Scholar
  22. 22.
    B.P. Anderson, Resource article: Experiments with vortices in superfluid atomic gases. J. Low Temp. Phys. 1–29 (2010)Google Scholar
  23. 23.
    N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17(22), 1133–1136 (1966)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Hadzibabic, J. Dalibard, Two-dimensional Bose fluids: An atomic physics perspective (2009). Rivista del Nuovo Cimento, vol. 34, pp. 389–434, 2011Google Scholar
  25. 25.
    D. Petrov, D. Gangardt, G. Shlyapnikov, Low-dimensional trapped gases. J. Phys. IV France 116, 5–44 (2004)CrossRefGoogle Scholar
  26. 26.
    A. Posazhennikova, Colloquium: Weakly interacting, dilute Bose gases in 2D. Rev. Mod. Phys. 78(4), 1111–1134 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Kosterlitz, D.J. Thouless, Long range order and metastability in two dimensional solids and superfluids. J. Phys. C: Solid State Phys. 5(11), L124–L126 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    V.L. Berezinskiĭ, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. Sov. Phys. JETP 32(3), 493–500 (1971)ADSGoogle Scholar
  29. 29.
    V.L. Berezinskiĭ, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP 34(3), 610–616 (1972)ADSGoogle Scholar
  30. 30.
    D.R. Nelson, J.M. Kosterlitz, Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39(19), 1201–1205 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    D.S. Fisher, P.C. Hohenberg, Dilute Bose gas in two dimensions. Phys. Rev. B 37(10), 4936–4943 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    N. Prokof’ev, O. Ruebenacker, B. Svistunov, Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett. 87(27), 270402 (2001)Google Scholar
  33. 33.
    N. Prokof’ev, B. Svistunov, Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A 66(4), 043608 (2002)Google Scholar
  34. 34.
    J. Kosterlitz, D. Thouless, Chapter 5 Two-Dimensional Physics, ed. by D. Brewer, Prog. Low Temp. Phys., (Elsevier, Amsterdam, 1978). Vol. 7, Part 2, pp. 371–433Google Scholar
  35. 35.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000)Google Scholar
  36. 36.
    D.J. Bishop, J.D. Reppy, Study of the superfluid transition in two-dimensional 4 he films. Phys. Rev. Lett. 40(26), 1727–1730 (1978)Google Scholar
  37. 37.
    D.J. Bishop, J.D. Reppy, Study of the superfluid transition in two-dimensional 4 he films. Phys. Rev. B 22(11), 5171–5185 (1980)Google Scholar
  38. 38.
    D.J. Resnick, J.C. Garland, J.T. Boyd, S. Shoemaker, R.S. Newrock, Kosterlitz-Thouless transition in proximity-coupled superconducting arrays. Phys. Rev. Lett. 47(21), 1542–1545 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    H.S.J. van der Zant, H.A. Rijken, J.E. Mooij, Phase transition of frustrated two-dimensional Josephson junction arrays. J. Low Temp. Phys. 82(1/2), 67–92 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    A.I. Safonov, S.A. Vasilyev, I.S. Yasnikov, I.I. Lukashevich, S. Jaakkola, Observation of quasicondensate in two-dimensional atomic hydrogen. Phys. Rev. Lett. 81(21), 4545–4548 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    V. Schweikhard, S. Tung, E.A. Cornell, Vortex proliferation in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensates. Phys. Rev. Lett. 99(3), 030401 (2007)Google Scholar
  43. 43.
    S. Tung, G. Lamporesi, D. Lobser, L. Xia, E.A. Cornell, Observation of the presuperfluid regime in a two-dimensional Bose gas. Phys. Rev. Lett. 105(23), 230408 (2010)Google Scholar
  44. 44.
    P. Cladé, C. Ryu, A. Ramanathan, K. Helmerson, W.D. Phillips, Observation of a 2D Bose gas: From thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102(17), 170401 (2009)Google Scholar
  45. 45.
    G. Roumpos, M.D. Fraser, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Single vortex-antivortex pair in an exciton polariton condensate. Nature Phys. 7, 129–133 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    F.P. Laussy, I.A. Shelykh, G. Malpuech, A. Kavokin, Effects of Bose-Enstein condensation of exciton polaritons in microcavities on the polarization of emitted light. Phys. Rev. B 73(3), 035315 (2006)Google Scholar
  47. 47.
    J.J. Baumberg, A.V. Kavokin, S. Christopoulos, A.J.D. Grundy, R. Butté, G. Christmann, D.D. Solnyshkov, G. Malpuech, et al., Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101(13), 136409 (2008)Google Scholar
  48. 48.
    D. Bajoni, P. Senellart, A. Lemaître, J. Bloch, Photon lasing in GaAs microcavity: Similarities with a polariton condensate. Phys. Rev. B 76(20), 201305 (2007)Google Scholar
  49. 49.
    D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys. Rev. Lett. 100(4), 047401 (2008)Google Scholar
  50. 50.
    R. Balili, B. Nelsen, D.W. Snoke, L. Pfeiffer, K. West, Role of the stress trap in the polariton quasiequilibrium condensation in gaas microcavities. Phys. Rev. B 79(7), 075319 (2009)Google Scholar
  51. 51.
    P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84(7), 1547–1550 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    C. Ciuti, P. Schwendimann, B. Deveaud, A. Quattropani, Theory of the angle-resonant polariton amplifier. Phys. Rev. B 62(8), R4825–R4828 (2000)Google Scholar
  53. 53.
    G. Roumpos, C.-W. Lai, T.C.H. Liew, Y.G. Rubo, A.V. Kavokin, Y. Yamamoto, Signature of the microcavity exciton-polariton relaxation mechanism in the polarization of emitted light. Phys. Rev. B 79(19), 195310 (2009)Google Scholar
  54. 54.
    I. Bloch, T.W. Hänsch, T. Esslinger, Measurement of the spatial coherence of a trapped Bose gas at the phase transition. Nature 403, 166–170 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    M.H. Szymańska, J. Keeling, P.B. Littlewood, Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96(23), 230602 (2006)Google Scholar
  56. 56.
    M.H. Szymańska, J. Keeling, P.B. Littlewood, Mean-field theory and fluctuation spectrum of a pumped decaying Bose-Fermi system across the quantum condensation transition. Phys. Rev. B 75(19), 195331 (2007)Google Scholar
  57. 57.
    H. Deng, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    D.N. Krizhanovskii, K.G. Lagoudakis, M. Wouters, B. Pietka, R.A. Bradley, K. Guda, D.M. Whittaker, M.S. Skolnick, et al., Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities. Phys. Rev. B 80(4), 045317 (2009)Google Scholar
  59. 59.
    E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, et al., Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6(11), 860-864 (2010)CrossRefGoogle Scholar
  60. 60.
    F. Manni, K.G. Lagoudakis, B. Pietka, L. Fontanesi, M. Wouters, V. Savona, R. André, B. Deveaud-Plédran, Polariton condensation in a one-dimensional disordered potential. Phys. Rev. Lett. 106, 176401 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    M. Wouters, I. Carusotto, C. Ciuti, Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates. Phys. Rev. B 77(11), 115340 (2008)Google Scholar
  62. 62.
    A.M. Weiner, Ultrafast Optics (Wiley, New York, 2009)CrossRefGoogle Scholar
  63. 63.
    M. Szymańska, F. Marchetti, J. Keeling, P. Littlewood, Coherence properties and luminescence spectra of condensed polaritons in CdTe microcavities. Solid State Comm. 144(9), 364–370 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    A. Kamenev, Many-body theory of non-equilibrium systems. ed. In H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, J. Dalibard, (Elsevier, Amsterdam, 2005). Nanophysics: Coherence and transport, Les Houches, Vol. LXXXI, p. 177Google Scholar
  65. 65.
    M. Wouters, I. Carusotto, Absence of long-range coherence in the parametric emission of photonic wires. Phys. Rev. B, 74, 245316 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    G. Roumpos, W.H. Nitsche, S. Höfling, A. Forchel, Y. Yamamoto, Gain-induced trapping of microcavity exciton polariton condensates. Phys. Rev. Lett. 104(12), 126403 (2010)Google Scholar
  67. 67.
    A.P.D. Love, D.N. Krizhanovskii, D.M. Whittaker, R. Bouchekioua, D. Sanvitto, S.A. Rizeiqi, R. Bradley, M.S. Skolnick, et al., Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101(6), 067404 (2008)Google Scholar
  68. 68.
    D.M. Whittaker, P.R. Eastham, Coherence properties of the microcavity polariton condensate. EPL 87, 27002 (2009)Google Scholar
  69. 69.
    L. Giorgetti, I. Carusotto, Y. Castin, Semiclassical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions. Phys. Rev. A 76(1), 013613 (2007)Google Scholar
  70. 70.
    M. Wouters, I. Carusotto, Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    T.W. Neely, E.C. Samson, A.S. Bradley, M.J. Davis, B.P. Anderson, Observation of vortex dipoles in an oblate Bose-Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang, B. Deveaud-Plédran, Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4(7), 706–710 (2008)CrossRefGoogle Scholar
  73. 73.
    S. Utsunomiya, L. Tian, G. Roumpos, C.W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, et al., Observation of Bogoliubov excitations in exciton-polariton condensates. Nat. Phys. 4(9), 700–705 (2008)CrossRefGoogle Scholar
  74. 74.
    I. Carusotto, C. Ciuti, Probing microcavity polariton superfluidity through resonant rayleigh scattering. Phys. Rev. Lett. 93(16), 166401 (2004)Google Scholar
  75. 75.
    A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, et al., Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805 (2009)CrossRefGoogle Scholar
  76. 76.
    M. Wouters, V. Savona, Superfluidity of a nonequilibrium Bose-Einstein condensate of polaritons. Phys. Rev. B 81(5), 054508 (2010)Google Scholar
  77. 77.
    D. Sanvitto, F.M. Marchetti, M.H. Szymańska, G. Tosi, M. Baudisch, F.P. Laussy, D.N. Krizhanovskii, M.S. Skolnick, et al., Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527–533 (2010)CrossRefGoogle Scholar
  78. 78.
    D.S. Petrov, M. Holzmann, G.V. Shlyapnikov, Bose-Einstein condensation in quasi-2D trapped gases. Phys. Rev. Lett. 84, 2551–2555 (2000)ADSCrossRefGoogle Scholar
  79. 79.
    M. Richard, J. Kasprzak, R. Romestain, R. André, L.S. Dang, Spontaneous coherent phase transition of polaritons in cdte microcavities. Phys. Rev. Lett. 94(18), 187401 (2005)Google Scholar
  80. 80.
    M.D. Fraser, G. Roumpos, Y. Yamamoto, Vortex-antivortex pair dynamics in an exciton polariton condensate. New J. Phys. 11, 113048 (2009)ADSCrossRefGoogle Scholar
  81. 81.
    S. Pigeon, I. Carusotto, C. Ciuti, Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Phys. Rev. B 83, 144513 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.E. L. Ginzton LaboratoryStanford UniversityStanfordUSA
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations