Polariton Nonlinear Dynamics: Theory and Experiments

  • Vladimir D. Kulakovskii
  • Sergei S. Gavrilov
  • Sergei G. Tikhodeev
  • Nikolay A. Gippius
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 172)

Abstract

The results of experimental studies are presented of the polariton system in a semiconductor microcavity excited resonantly at various wave vectors by ns-long pulse laser with various light polarizations along with a theoretical description of the nonlinear effects in the polariton system. The interplay between the parametric scattering and self-instability of the driven mode results in a rich variety of scattering scenarios (or cavity dynamics) sensitive to variation of both the intensity and polarization state of the external pump. The observed instabilities and hysteresis effects in a scalar polariton system excited with circularly polarized pulses can be qualitatively reproduced within the semiclassical model of dynamically self-organized optical parametric oscillator (OPO), based on the resonant approximation of cavity electrodynamics and the Ginzburg-Landau-Gross-Pitaevskii-type equation for coherent excitonic interband polarization. However, this model fails to explain the polarization instabilities in the effectively spinor system excited with elliptically polarized pulses. The dynamics of such a system is strongly affected by the long-lived exciton reservoir (excited due to polariton scattering) which brings about additional blueshift of both components of bright excitons and results in the qualitative changes in the development of the polarization instabilities in the driven mode and in the OPO signal. Those transitions are phenomenologically introduced into the modified semiclassical model. In spite of some limitations, this model provides a self-consistent approach to description of intracavity field dynamics under both pulse and continuous wave excitation conditions and gives a good qualitative description of the observed polarization instabilities and hysteresis effects in the dynamics of both the driven mode and OPO signal.

Keywords

Optical Parametric Oscillator Drive Mode Parametric Scattering Polarization Instability Polariton Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69(23), 3314 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Yamamoto, T. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics, (Springer, Berlin, Heidelberg, 2000) pp. 4958Google Scholar
  3. 3.
    A.V. Kavokin, G. Malpuech, Cavity Polaritons, (Elsevier, Amsterdam, 2003)Google Scholar
  4. 4.
    J.J. Baumberg, P.G. Savvidis, R.M. Stevenson, A.I. Tartakovskii, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. B 62(24), R16247 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    R.M. Stevenson, V.N. Astratov, M.S. Skolnick, D.M. Whittaker, M. Emam-Ismail, A.I. Tartakovskii, P.G. Savvidis, J.J. Baumberg, J.S. Roberts, Phys. Rev. Lett. 85(17), 3680 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    V.D. Kulakovskii, A.I. Tartakovskii, D.N. Krizhanovskii, N.A. Gippius, M.S. Skolnick, J.S. Roberts, Nanotechnology 12, 475 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    R. Butte, M.S. Skolnick, D.M. Whittaker, D. Bajoni, J.S. Roberts, Phys. Rev. B 68(11), 115325 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    D.N. Krizhanovskii, S.S. Gavrilov, A.P.D. Love, D. Sanvitto, N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, D.M. Whittaker, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 77(11), 115336 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    N.A. Gippius, I.A. Shelykh, D.D. Solnyshkov, S.S. Gavrilov, Y.G. Rubo, A.V. Kavokin, S.G. Tikhodeev, G. Malpuech, Phys. Rev. Lett. 98(23), 236401 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    T.K. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, B. Deveaud-Plédran, Nat. Mater 9(8), 655 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    D. Sarkar, S.S. Gavrilov, M. Sich, J.H. Quilter, R.A. Bradley, N.A. Gippius, K. Guda, V.D. Kulakovskii, M.S. Skolnick, D.N. Krizhanovskii, Phys. Rev. Lett. 105(21), 216402 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    C. Adrados, A. Amo, T.C.H. Liew, R. Hivet, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Phys. Rev. Lett. 105(21), 216403 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443(7110), 409 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    A.I. Tartakovskii, D.N. Krizhanovskii, V.D. Kulakovskii, Phys. Rev. B 62(20), R13298 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, D.N. Krizhanovskii, A.I. Tartakovskii, Europhys. Lett. 67(6), 997 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    C. Ciuti, P. Schwendimann, B. Deveaud, A. Quattropani, Phys. Rev. B 62(8), R4825 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    C. Ciuti, P. Schwendimann, A. Quattropani, Phys. Rev. B 63(4), 041303 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    D.M. Whittaker, Phys. Rev. B 63(19), 193305 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    P.G. Savvidis, C. Ciuti, J.J. Baumberg, D.M. Whittaker, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 64(7), 075311 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, Phys. Stat. Sol. (c) 2(2), 744 (2005)Google Scholar
  21. 21.
    S.S. Gavrilov, N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, JETP 110(5), 825 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    P. Renucci, T. Amand, X. Marie, P. Senellart, J. Bloch, B. Sermage, K.V. Kavokin, Phys. Rev. B 72(7), 075317 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    V.F. Elesin, Y.V. Kopaev, Sov. Phys. JETP 36(4), 767 (1973)ADSGoogle Scholar
  24. 24.
    W.J. Firth, A.J. Scroggie, Phys. Rev. Lett. 76(10), 1623 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, M. Brambilla, Phys. Rev. Lett. 84(26), 6006 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    A. Baas, J.P. Karr, H. Eleuch, E. Giacobino, Phys. Rev. A 69(2), 023809 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    N.A. Gippius, S.G. Tikhodeev, J. Phys.: Condens. Matter 16, S3653 (2004).Google Scholar
  28. 28.
    V.D. Kulakovskii, D.N. Krizhanovskii, A.I. Tartakovskii, N.A. Gippius, S.G. Tikhodeev, Phys. Uspekhi 46(9), 967 (2003). [Uspekhi Fiz. Nauk 173, 995 (2003)]Google Scholar
  29. 29.
    N.A. Gippius, S.G. Tikhodeev, L.V. Keldysh, V.D. Kulakovskii, Phys. Uspekhi 48(3), 306 (2005). [Uspekhi Fiz. Nauk 175, 327 (2005)]Google Scholar
  30. 30.
    S.S. Gavrilov, N.A. Gippius, V.D. Kulakovskii, S.G. Tikhodeev, Zh. Eksp. Teor. Fiz. 131, 819 (2007). [JETP 104, 715–723 (2007)]Google Scholar
  31. 31.
    A.A. Demenev, A.A. Shchekin, A.V. Larionov, S.S. Gavrilov, V.D. Kulakovskii, N.A. Gippius, S.G. Tikhodeev, Phys. Rev. Lett. 101(13), 136401 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Demenev, A.A. Shchekin, A.V. Larionov, S.S. Gavrilov, V.D. Kulakovskii, Phys. Rev. B 79(16), 165308 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    D.M. Whittaker, Phys. Rev. B 71(11), 115301 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    I.A. Shelykh, T.C.H. Liew, A.V. Kavokin, Phys. Rev. Lett. 100(11), 116401 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    T.C.H. Liew, A.V. Kavokin, I.A. Shelykh, Phys. Rev. Lett. 101(1), 016402 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    K.V. Kavokin, P. Renucci, T. Amand, X. Marie, P. Senellart, J. Bloch, B. Sermage, Phys. Stat. Sol. (c) 2(763) (2005)Google Scholar
  37. 37.
    M. Vladimirova, S. Cronenberger, D. Scalbert, K.V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, A.V. Kavokin, Phys. Rev. B 82(7), 075301 (2010).ADSCrossRefGoogle Scholar
  38. 38.
    J. ichi Inoue, T. Brandes, A. Shimizu, Phys. Rev. B 61(4), 2863 (2000).Google Scholar
  39. 39.
    M. Kuwata-Gonokami, S. Inouye, H. Suzuura, M. Shirane, R. Shimano, T. Someya, H. Sakaki, Phys. Rev. Lett. 79(7), 1341 (1997).ADSCrossRefGoogle Scholar
  40. 40.
    D.N. Krizhanovskii, D. Sanvitto, I.A. Shelykh, M.M. Glazov, G. Malpuech, D.D. Solnyshkov, A. Kavokin, S. Ceccarelli, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 73(7), 073303 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    M. Wouters, Phys. Rev. B 76(4), 045319 (2007).MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    S.S. Gavrilov, A.S. Brichkin, A.A. Dorodnyi, S.G. Tikhodeev, N.A. Gippius, V.D. Kulakovskii, JETP Lett. 92, 171 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, T. Ishihara, Phys. Rev. B 66(4), 045102 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    D.N. Krizhanovskii, D. Sanvitto, A.P.D. Love, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. Lett. 97(9), 097402 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vladimir D. Kulakovskii
    • 1
  • Sergei S. Gavrilov
    • 1
  • Sergei G. Tikhodeev
    • 2
    • 3
  • Nikolay A. Gippius
    • 2
    • 3
  1. 1.Institute of Solid State PhysicsRASChernogolovkaRussia
  2. 2.A. M. Prokhorov General Physics InstituteRASMoscowRussia
  3. 3.LASMEA, UMR 6602 CNRSUniversité Blaise PascalAubièreFrance

Personalised recommendations