Electrically Driven Polariton Light Emitting Devices

  • Simeon I. Tsintzos
  • Nikolaos T. Pelekanos
  • Pavlos G. Savvidis
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 172)

Abstract

The aim of this chapter is to highlight the recent progress in the rapidly developing field of electrically driven polariton devices. The unprecedented potential of polariton-based devices owes its origin mainly to the bosonic property of polaritons to condense in the same final state, thus requiring no population inversion to achieve lasing. Consequently, it is widely believed that the threshold of a polariton laser is at least two orders of magnitude lower than that of a conventional semiconductor photon laser operating in the weak-coupling regime [C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69, 3314–3317 (1992)]. This makes polariton lasers extremely promising as ultralow threshold lasers or as low-power sources of coherent and nonclassical light. Electrical injection of these entangled light-matter states is a key step toward the realisation of practical, compact devices. Recent demonstrations of electrically pumped polariton LEDs in organic as well as inorganic material systems operating up to room temperature have highlighted the potential of such devices for real-world polariton-based applications in optoelectronics.

Keywords

Quantum Well Cavity Mode Polariton Mode Rabi Splitting Polariton Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    E. Burstein E and C. Weisbuch, Confined Electrons and Photons: New Physics and Applications ( New York: Plenum ) 1995. Google Scholar
  3. 3.
    P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M. Skolnick, D.M. Whittaker and J.S. Roberts, Angle-Resonant Stimulated Polariton Amplifier, Phys. Rev. Lett 84, 1547 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    D. Bajoni, P. Senellart, E Wertz, I Sagnes, A. Miard, A Lemaitre, J Bloch, Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008)Google Scholar
  5. 5.
    S. Christopoulos et al., Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Tischler, M.S. Bradley, V. Bulovic, J.H. Song, A. Nurmikko, A strong coupling in microcavity LED. Phys. Rev. Lett. 95, 036401, (2005)ADSCrossRefGoogle Scholar
  7. 7.
    C. Ciuti, P. Schwendimann, B. Deveaud, A. Quattropani, Theory of the angle-resonant polariton amplifier. Phys. Rev. B. 62, R4825–R4828 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Gennser, C. Sirtori, Electrically injected cavity polaritonsl. Phys. Rev. Lett. 100, 136806 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L. Sapienza et al., Photovoltaic probe of cavity polaritons in a quantum cascade structure. Appl. Phys. Lett. 90, 201101 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    R.P. Schneider, J.A. Lott, Cavity design for improved electrical injection in InAlGaP/AlGaAs visible (639–661 nm) vertical cavity surface emitting laser diodes. Appl. Phys. Lett. 63, 917 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    K. Tai, L. Yang, Y.H. Wang, J.D. Wynn, A.Y. Cho, Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface emitting lasers. Appl. Phys. Lett. 56, 2496 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    S.A. Chalmers, K.L. Lear, K.P. Killeen, Low resistance wavelength reproducible p-type (Al,Ga)As distributed Bragg reflectors grown by molecular beam epitaxy. Appl. Phys. Lett. 62, 1585 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hong, J. Mannaerts, J. Hong, R. Fischer, K. Tai, J. Kwo, J. Vandenberg, Y. Wang, J. Gamelin, A simple way to reduce series resistance in p-doped semiconductor distributed Bragg reflectors. J. Cryst. Growth 111, 1071 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    M.G. Peters, B.J. Thibeault, D.B. Young, J.W. Scott, F.H. Peters, A.C. Gossard, L.A. Coldren, Band-gap engineered digital alloy interfaces for lower resistance vertical cavity surface emitting lasers. Appl. Phys. Lett. 63, 3411 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    M. Hong, D. Vakhshoori, J.P. Mannaerts, Y.F. Hsieh, Low resistivity vertical cavity surface emitting lasers grown by molecular beam epitaxy using sinusoidal composition grading in mirrors and in situ nonalloyed ohmic contacts. J. Vac. Sci. Technol. B 13, 758 (1995)CrossRefGoogle Scholar
  16. 16.
    S. Tsintzos, P.G. Savvidis, G. Konstantinidis, Z. Hatzopoulos, N.T. Pelekanos, Towards electrically-pumped microcavity polariton lasers. Phys. Stat. Sol. (c) 5, 3594 (2008)Google Scholar
  17. 17.
    S. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S.I. Tsintzos, P.G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, N.T. Pelekanos, Room temperature GaAs exciton-polariton light emitting diode. Appl. Phys. Lett. 94, 071109 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007)CrossRefGoogle Scholar
  20. 20.
    D. Gammon, S. Rudin, T.L. Reinecke, D.S. Katzer, C.S. Kyono, Phonon broadening of excitons in \({\mathrm{GaAs/Al}}_{x}{\mathrm{Ga}}_{1-x}\mathrm{As}\) quantum wells. Phys. Rev. B 51, 16785 (1995)Google Scholar
  21. 21.
    I. Carussotto, C. Ciuti, Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    G. Christmann, C. Coulson, J.J. Baumberg, N.T. Pelekanos, Z. Hatzopoulos, S.I. Tsintzos, P.G. Savvidis, Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities. Phys. Rev. B 82, 113308 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    D.Y. Oberli, J. Shah, T.C. Damen, J.M. Kuo, J.E. Henry, J. Lary, S.M. Goodnick, Optical phonon-assisted tunneling in double quantum well structures. Appl. Phys. Lett. 56, 1239 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Feng, J.H. Park, S. Ozaki, H. Kubo, N. Mori, C. Hamaguchi, Resonant optical-phonon assisted tunnelling in an asymmetric double-quantum-well structure. Semicond. Sci. Technol. 12, 1116 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    P.G. Lagoudakis, M.D. Martin, J.J. Baumberg, A. Qarry, E. Cohen, L.N. Pfeiffer, Electron-polariton scattering in semiconductor microcavities. Phys. Rev. Lett. 90, 206401 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    M. Perrin, P. Senellart, A. Lemaître, J. Bloch, Polariton relaxation in semiconductor microcavities: efficiency of electron polariton scattering. Phys. Rev. B 72, 075340 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    G. Malpuech, A. Kavokin, A. Di Carlo, J.J. Baumberg, Polariton lasing by exciton-electron scattering in semiconductor microcavities. Phys. Rev. B 65, 153310 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simeon I. Tsintzos
    • 1
  • Nikolaos T. Pelekanos
    • 1
  • Pavlos G. Savvidis
    • 1
  1. 1.Department of Materials Science and TechnologyUniversity of Crete, and FORTHHeraklionGreece

Personalised recommendations