Advertisement

Exciton–Polaritons in Organic Semiconductor Optical Microcavities

  • Stéphane Kéna-Cohen
  • Stephen R. Forrest
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 172)

Abstract

The large exciton binding energies and oscillator strengths of organic semiconductors have allowed the realization of strong exciton–photon coupling at room temperature in microcavities containing a wide variety of materials. The first part of this chapter reviews the physics of organic semiconductors and initial observations of cavity polaritons in this class of materials. In the second part, the linear optical properties of crystalline organic microcavities are discussed and contrasted to previous organic and inorganic microcavity results. The chapter concludes with a discussion of recent organic polariton lasing results and future prospects for realizing nonlinear behavior using organic polaritons.

Keywords

Organic Semiconductor Inorganic Semiconductor Frenkel Exciton Excitonic Resonance Rabi Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to acknowledge the Air Force Office of Scientific Research and Universal Display Corp. for partial financial support of this work.

References

  1. 1.
    S.R. Forrest, Chem. Rev. 97(6), 1793–1896 (1997)CrossRefGoogle Scholar
  2. 2.
    M. Pope, C.E. Swenberg, M. Pope, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999)Google Scholar
  3. 3.
    F.F. So, S.R. Forrest, Phys. Rev. Lett. 66(20), 2649–2652 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Agranovich, Excitations in Organic Solids (Oxford University Press, Oxford, 2009)Google Scholar
  5. 5.
    R.R. Lunt, K. Sun, M. Kröger, J.B. Benziger, S.R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 064114 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Baldo, V.G. Kozlov, P.E. Burrows, S.R. Forrest, V.S. Ban, B. Koene, M.E. Thompson, Appl. Phys. Lett. 71(21), 3033–3035 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    R. Butte, G. Christmann, E. Feltin, J.F. Carlin, M. Mosca, M. Ilegems, N. Grandjean, Phys. Rev. B: Condens. Matter Mater. Phys. 73(3), 033315 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    R. Shimada, J. Xie, V. Avrutin, U. Ozgur, H. Morkoc, Appl. Phys. Lett. 92(1), 011127 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    S. Christopoulos, G.B.H. von Hogersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butte, E. Feltin, J.F. Carlin, N. Grandjean, Phys. Rev. Lett. 98(12), 126405 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    G. Christmann, R. Butte, E. Feltin, J.F. Carlin, N. Grandjean, Appl. Phys. Lett. 93(5), 1102 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    D.G. Lidzey, D.D.C. Bradley, M.S. Skolnick, T. Virgili, S. Walker, D.M. Whittaker, Nature 395(6697), 53–55 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    D.G. Lidzey, D.D.C. Bradley, T. Virgili, A. Armitage, M.S. Skolnick, S. Walker, Phys. Rev. Lett. 82(16), 3316–3319 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kobayashi, J-Aggregates (World Scientific, Singapore, 1996)Google Scholar
  14. 14.
    M. Litinskaya, P. Reineker, V.M. Agranovich, J. Luminesc. 110(4), 364–372 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    P. Michetti, G.C. La Rocca, Phys. Rev. B: Condens. Matter Mater. Phys. 77(19), 195301 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    T. Virgili, D. Coles, A.M. Adawi, C. Clark, P. Michetti, S.K. Rajendran, D. Brida, D. Polli, G. Cerullo, D.G. Lidzey, Phys. Rev. B: Condens. Matter Mater. Phys. 83(24), 245309 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    G.C. Schatz, M.A. Ratner, Quantum Mechanics in Chemistry (Dover, NY, USA, 2002)Google Scholar
  18. 18.
    R.J. Holmes, S.R. Forrest, Phys. Rev. Lett. 93(18), 186404 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    L. Fontanesi, L. Mazza, G.C. La Rocca, Phys. Rev. B: Condens. Matter Mater. Phys. 80(23), 235313 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    A. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007)CrossRefGoogle Scholar
  21. 21.
    G. Panzarini, L.C. Andreani, A. Armitage, D. Baxter, M.S. Skolnick, V.N. Astratov, J.S. Roberts, A.V. Kavokin, M.R. Vladimirova, M.A. Kaliteevski, Fiz. Tverd. Tela (Leningrad) [Sov. Phys. Solid State] 41(8), 1223–1238 (1999)Google Scholar
  22. 22.
    V.M. Agranovich, M. Litinskaia, D.G. Lidzey, Phys. Rev. B: Condens. Matter Mater. Phys. 67(8), 085311 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    P. Michetti, G.C. La Rocca, Phys. Rev. B: Condens. Matter Mater. Phys. 71(11), 115320 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    S. Kena-Cohen, S.R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 77(7), 073205 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    A.S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971)Google Scholar
  26. 26.
    M. Litinskaya, P. Reineker, V.M. Agranovich, Phys. Status Solidi A: Appl. Res. 201(4), 646–654 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    H. Zoubi, G.C. La Rocca, Phys. Rev. B: Condens. Matter Mater. Phys. 71(23), 235316 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    S. Kena-Cohen, M. Davanco, S.R. Forrest, Phys. Rev. Lett. 101(11), 116401 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    C. Kim, P.E. Burrows, S.R. Forrest, Science 288(5467), 831–833 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    S. Kena-Cohen, M. Davanco, S.R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 78(15), 153102 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    R.R. Lunt, S. Kena-Cohen, J.B. Benziger, S.R. Forrest, Phys. Rev. Lett. 102(6), 065504 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    H. Kondo, A. Takeda, T. Tomikawa, H. Kurisu, S. Yamamoto, M. Matsuura, J. Luminesc. 119, 137–141 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    S. Hashimoto, N. Ohno, M. Itoh, Phys. Status Solidi B 165(1), 277–286 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    G.C. Morris, M.G. Sceats, Chem. Phys. 3(2), 164–179 (1974)ADSCrossRefGoogle Scholar
  35. 35.
    D.W. Berreman, J. Opt. Soc. Am. 62(4), 502–510 (1972)Google Scholar
  36. 36.
    T. Freixanet, B. Sermage, J. Bloch, J.Y. Marzin, R. Planel, Phys. Rev. B: Condens. Matter Mater. Phys. 60(12), R8509–R8512 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    R. Houdre, C. Weisbuch, R.P. Stanley, U. Oesterle, M. Ilegems, Phys. Rev. B: Condens. Matter Mater. Phys. 61(20), R13333–R13336 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd edn. (Springer, Berlin, 1999)Google Scholar
  39. 39.
    W. Langbein, J.M. Hvam, Phys. Rev. Lett. 88(4), 047401 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    M. Schubert, Phys. Rev. B: Condens. Matter Mater. Phys. 53(8), 4265–4274 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    A. Matsui, Y. Ishii, J. Phys. Soc. Jpn. 23(3), 581 (1967)ADSCrossRefGoogle Scholar
  42. 42.
    A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53(6), 4250–4253 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443(7110), 409–414 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, Proc. Natl. Acad. Sci. USA 100(26), 15318–15323 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    S. Kena-Cohen, S.R. Forrest, Nat. Photon. 4(6), 371–375 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    P. Debernardi, G.P. Bava, C. Degen, I. Fischer, W. Elsasser, IEEE J. Quantum Electron. 38(1), 73–84 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    L. Mazza, L. Fontanesi, G.C. La Rocca, Phys. Rev. B: Condens. Matter Mater. Phys. 80(23), 235314 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    F. Tassone, Y. Yamamoto, Phys. Rev. B: Condens. Matter Mater. Phys. 59(16), 10830–10842 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    O.S. Avanesyan, V.A. Bendersky, V.K. Brikenshtein, V.L. Broude, A.G. Lavrushko, I.I. Tartakovsky, P.G. Filippov, Quantum Electron. 7(4), 403 (1977)ADSCrossRefGoogle Scholar
  50. 50.
    L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, Opt. Commun. 229(1–6), 337–348 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    M. Litinskaya, Phys. Rev. B: Condens. Matter Mater. Phys. 77(15), 155325 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    G. Malpuech, Y.G. Rubo, F.P. Laussy, P. Bigenwald, A.V. Kavokin, Semicond. Sci. Technol. 18(10), S395–S404 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    G. Malpuech, A. Kavokin, F.P. Laussy, Phys. Status Solidi A 195(3), 568–578 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    G.H. Lodden, R.J. Holmes, Phys. Rev. B: Condens. Matter Mater. Phys. 82(12), 125317 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    J.R. Tischler, M.S. Bradley, V. Bulovic, J.H. Song, A. Nurmikko, Phys. Rev. Lett. 95(3), 036401 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    M.A. Baldo, R.J. Holmes, S.R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 66(3), 035321 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    N.C. Giebink, S.R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 79(7), 073302–073306 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    V.M. Agranovich, G.C. La Rocca, F. Bassani, H. Benisty, C. Weisbuch, Opt. Mater. 9(1–4), 430–436 (1998)CrossRefGoogle Scholar
  59. 59.
    R.J. Holmes, S. Kena-Cohen, V.M. Menon, S.R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 74(23), 235211 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J.S. Lauret, M.S. Skolnick, E. Deleporte, D.G. Lidzey, Phys. Rev. B: Condens. Matter Mater. Phys. 74(23), 235212 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    P.G. Lagoudakis, M.D. Martin, J.J. Baumberg, G. Malpuech, A. Kavokin, J. Appl. Phys. 95(5), 2487–2489 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsImperial CollegeLondonUK
  2. 2.Departments of Physics and Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations