Exciton–Polariton Coupling with Acoustic Phonons

  • Edgar Cerda-Méndez
  • Dmitryi Krizhanovskii
  • Michiel Wouters
  • Klaus Biermann
  • Rudolf Hey
  • Maurice S. Skolnick
  • Paulo V. Santos
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 172)


Exciton–polariton are solid-state composite bosons with a high photonic character and low effective mass, which have been proven to undergo a thermodynamic phase transition to a macroscopically occupied state—a condensate—above a characteristic threshold density (Kasprzak et al. Nature 443:409, 2006; Balili et al. Science 316:1007, 2007). Full exploitation of the unique polariton properties requires dynamic processes for the dynamic confinement and control of the interaction between condensates. Here, we demonstrate a novel approach for the formation of arrays of interacting polariton condensates based on the spatial and temporal modulation by a coherent acoustic phonon. Analogous to the confinement of atomic Bose–Einstein condensates by optical lattices, the acoustic spatial modulation forms an array of polariton wires aligned with the phonon wavefronts. We show that the moving acoustic modulation controls both the energetic configuration and the spatial coherence length of the polariton condensates. Furthermore, the confinement potential moves with the acoustic velocity, thereby transporting the polariton wires. These moving acoustic confinement potentials provide, therefore, a powerful framework for manipulation and transport of solid-state condensates.


Surface Acoustic Wave Optical Parametric Oscillator Acoustic Modulation Acoustic Power Confinement Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the technical support from A.-K. Bluhm, M. Höricke, S. Krauß, W. Seidel, H.-P. Schönherr, and E. Wiebicke in the fabrication of the samples.


  1. 1.
    A. Amo, D.B. Sanvitto, F. Laussy, E. del Valle, M. Martin, A. Lemaitre, J. Bloch, D. Krizhanovskii, M. Skolnick, C. Tejedor, L. Vina, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291 (2009). DOI 10.1038/nature07640ADSCrossRefGoogle Scholar
  2. 2.
    A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdr, E. Giacobino, A. Bramati,, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805 (2009). DOI 10.1038/ nphys1364CrossRefGoogle Scholar
  3. 3.
    A. Amo, S. Pigeon, C. Adrados, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B 82(8), 081, 301 (2010). DOI 10.1103/ PhysRevB.82.081301Google Scholar
  4. 4.
    B.A. Auld, Acoustic Fields and Waves in Solids. (Robert E. Krieger Publishing Company, Inc, Malabar, Florida 1990)Google Scholar
  5. 5.
    D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047, 401 (2008)Google Scholar
  6. 6.
    R. Balili, V. Hartwell, D. Snoke, L. Peiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J.J. Baumberg, A.V. Kavokin, S. Christopoulos, A.J.D. Grundy, R. Butt, G. Christmann, D.D. Solnyshkov, G. Malpuech, G.B.H. von Högersthal, E. Feltin, J.F. Carlin, N. Grandjean, Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101, 136,409 (2008). DOI 10.1103/PhysRevLett.101.136409. URL Google Scholar
  8. 8.
    F.S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, M. Inguscio, Josephson junction arrays with bose-einstein condensates. Science 293(5531), 843–846 (2001). DOI 10. 1126/science.1062612ADSCrossRefGoogle Scholar
  9. 9.
    E.A. Cerda-Méndez, D.N. Krizhanovskii, K. Biermann, R. Hey, P.V. Santos, M. Skolnick, Effects of the piezoelectric field in the modulation of exciton-polaritons by surface acoustic waves. Superlattices Microstruct. 49(3), 233–240 (2010). DOI 10.1016/j.spmi.2010.06.006ADSCrossRefGoogle Scholar
  10. 10.
    E.A. Cerda-Méndez, D.N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P.V. Santos, D. Sarkar, M.S. Skolnick, Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett. 105, 116, 402 (2010). DOI 10.1103/PhysRevLett.105.116402. URL Google Scholar
  11. 11.
    S. Christopoulos, G.B.H. von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.F. Carlin, N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98(12), 126, 405 (2007). DOI 10.1103/PhysRevLett.98.126405Google Scholar
  12. 12.
    C. Ciuti, P. Schwendimann, A. Quattropani, Parametric luminescence of microcavity polaritons. Phys. Rev. B 63(4), 041, 303 (2001). DOI 10.1103/PhysRevB.63.041303. URL Google Scholar
  13. 13.
    G. Dasbach, M. Schwab, M. Bayer, D. Krizhanovskii, A. Forchel, Tailoring the polariton dispersion by optical confinement: Access to a manifold of elastic polariton pair scattering channels. Phys. Rev. B 66(20), 201, 201 (2002). DOI 10.1103/PhysRevB.66.201201Google Scholar
  14. 14.
    Jr. M.M. de Lima, R. Hey, P.V. Santos, A. Cantarero, Phonon-induced optical superlattice. Phys. Rev. Lett. 94, 126, 805 (2005)Google Scholar
  15. 15.
    Jr. M.M. de Lima, M. van der Poel, P.V. Santos, J.M. Hvam, Phonon-induced polariton superlattices. Phys. Rev. Lett. 97, 045, 501 (2006)Google Scholar
  16. 16.
    M.M. de Lima Jr., P.V. Santos, Modulation of photonic structures by surface acoustic waves. Rep. Prog. Phys. 68, 1639 (2005)Google Scholar
  17. 17.
    C. Gorecki, F. Chollet, E. Bonnotte, H. Kawakatsu, Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves. Opt. Lett. 22, 1784 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature 415(6867), 39–44 (2002). DOI 10.1038/415039aADSCrossRefGoogle Scholar
  19. 19.
    M.J. Hoskins, H. Morkoç, B.J. Hunsinger, Charge transport by surface acoustic waves in GaAs. Appl. Phys. Lett. 41, 332 (1982). DOI 10.1063/1.93526. URL Google Scholar
  20. 20.
    A.L. Ivanov, P.B. Littlewood, Resonant acousto-optics of microcavity polaritons. Semicond. Sci. Technol. 18, S428 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81(15), 3108 (1998). DOI 10.1103/PhysRevLett.81.3108Google Scholar
  22. 22.
    R.I. Kaitouni, O.E. Daif, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J.D. Ganiere, J.L. Staehli, V. Savona, B. Deveaud, Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B Condens. Matter Mater. Phys. 74(15), 155311 (2006). DOI 10.1103/PhysRevB.74.155311. URL Google Scholar
  23. 23.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Bose-Einstein condensation of exciton polaritons. Nature 443, 409 (2006)Google Scholar
  24. 24.
    A. Korpel, Acousto-Optics. (Marcel Dekker, Inc., New York 1997)Google Scholar
  25. 25.
    D.N. Krizhanovskii, S.S. Gavrilov, A.P.D. Love, D. Sanvitto, N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, D.M. Whittaker, M.S. Skolnick, J.S. Roberts, Self-organization of multiple polariton-polariton scattering in semiconductor microcavities. Phys. Rev. B 77(11), 115336 (2008). DOI 10.1103/PhysRevB.77.115336. URL Google Scholar
  26. 26.
    D.N. Krizhanovskii, D. Sanvitto, A.P.D. Love, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Dominant effect of polariton-polariton interactions on the coherence of the microcavity optical parametric oscillator. Phys. Rev. Lett. 97, 097, 402 (2006)Google Scholar
  27. 27.
    K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I.R.A. Carusotto, L.S. Dang, B. Deveaud-Plédran, Quantized vortices in an excitonpolariton condensate. Nat. Phys. 4, 706 (2008). DOI 10.1038/ nphys1051CrossRefGoogle Scholar
  28. 28.
    C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, Y. Yamamoto, Coherent zero-state and pi-state in an exciton-polariton condensate array. Nature 450, 529 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    M.M. de Lima Jr., M. Beck, R. Hey, P.V. Santos, Compact Mach-Zehnder acousto-optic modulator. Appl. Phys. Lett. 89, 121, 104 (2006)Google Scholar
  30. 30.
    A.P.D. Love, D.N. Krizhanovskii, D.M. Whittaker, R. Bouchekioua, D. Sanvitto, S.A. Rizeiqi, R. Bradley, M.S. Skolnick, P.R. Eastham, R. André, L.S. Dang, Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101(6), 067404 (2008). DOI 10.1103/PhysRevLett.101.067404. URL Google Scholar
  31. 31.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condesation. (Clarendon Press, Oxford, 2003)Google Scholar
  32. 32.
    L. Rayleigh, On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc. s1-17(1), 4–11 (1885). DOI 10.1112/ plms/s1-17.1.4. URL
  33. 33.
    C. Rocke, O. Govorov, A. Wixforth, G. Böhm, G. Weimann, Exciton ionization in a quantum well studied by surface acoustic waves. Phys. Rev. B 57, R6850 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    C. Rocke, S. Zimmermann, A. Wixforth, J.P. Kotthaus, G. Böhm, G. Weimann, Acoustically driven storage of light in a quantum well. Phys. Rev. Lett. 78, 4099 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    D. Royer, E. Dieulesaint, Elastic Waves in Solids. (Springer, Heidelberg, 2000)Google Scholar
  36. 36.
    T. Sogawa, P.V. Santos, S.K. Zhang, S. Eshlaghi, A.D. Wieck, K.H. Ploog, Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves. Phys. Rev. Lett. 87, 276, 601–1 (2001)Google Scholar
  37. 37.
    J.A.H. Stotz, R. Hey, P.V. Santos, K.H. Ploog, Coherent spin transport via dynamic quantum dots. Nat. Mater. 4, 585 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    C.S. Tsai, Guided-Wave Acousto-Optics. (Springer, Berlin, 1990)Google Scholar
  39. 39.
    S. Utsunomiya, L. Tian, G. Roumpos, C.W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Observation of bogoliubov excitations in exciton-polariton condensates. Nat. Phys. 4, 700 (2008). DOI 10.1038/nphys1034CrossRefGoogle Scholar
  40. 40.
    R.M. White, Surface elastic waves. In: Proceedings of the IEEE, vol. 58, (IEEE, New York, 1970) p. 1238Google Scholar
  41. 41.
    R.M. White, F.W. Vollmer, Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Letts. 7(12), 314 (1965)Google Scholar
  42. 42.
    D.M. Whittaker, Effects of polariton-energy renormalization in the microcavity optical parametric oscillator. Phys. Rev. B 71(11), 115, 301 (2005). DOI 10.1103/PhysRevB.71.115301. URL Google Scholar
  43. 43.
    M. Wouters, I. Carusotto, Absence of long-range coherence in the parametric emission of photonic wires. Phys. Rev. B 74(24), 245316 (2006). DOI 10.1103/PhysRevB.74.245316. URL Google Scholar
  44. 44.
    K.S. Zhuravlev, D.P. Petrov, Y.B. Bolkhovityanov, N.S. Rudaja, Effect of surface acoustic waves on low-temperature photoluminescence of GaAs. Appl. Phys. Lett. 70, 3389 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Edgar Cerda-Méndez
    • 1
  • Dmitryi Krizhanovskii
    • 2
  • Michiel Wouters
    • 3
  • Klaus Biermann
    • 1
  • Rudolf Hey
    • 1
  • Maurice S. Skolnick
    • 2
  • Paulo V. Santos
    • 1
  1. 1.Paul-Drude-Institut für FestkörperelektronikBerlinGermany
  2. 2.Department of Physics and AstronomyUniversity of SheffieldSheffieldUK
  3. 3.Department of PhysicsUniversity of AntwerpenEdegemBelgium

Personalised recommendations