Advertisement

Imaging the Human Body: Micro- and Nanostructure of Human Tissues

  • Georg Schulz
  • Hans Deyhle
  • Bert Müller
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Computed tomography based on X-rays is known to provide the best spatial resolution of all clinical three-dimensional imaging facilities and currently reaches a fraction of a millimeter. Better spatial and density resolution is obtained by means of micro computed tomography well established in the field of materials science. It is also very supportive imaging human tissues down to the level of individual cells (Lareida et al. J. Microsc. 234:95, 2009). The article demonstrates the power of micro computed tomography for imaging parts of the human body such as teeth, inner ear, cerebellum, tumors, and urethral tissue with conventional X-ray sources and synchrotron radiation facilities in absorption and phase contrast modes. The second part of the chapter relies on scanning X-ray scattering of tooth slices (Müller et al. Eur. J. Clin. Nanomed. 3:30, 2010) to uncover the presence of nanostructures including their anisotropy and orientation. This imaging technique gives unrivalled insights for medical experts, which will have a major influence on fields such as dental and incontinence treatments.

Keywords

Modulation Transfer Function Dentinal Tubule Absorption Contrast Stratum Granulosum Paul Scherrer Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful for the support of numerous researchers. In particular, the experimental support and the support in the SAXS data treatment of O. Bunk (Paul Scherrer Institut, Villigen, Switzerland), the valuable assistance in SRμCT by F. Beckmann and J. Herzen (HZG, Hamburg, Germany), the experimental support and help in image generation of tumors by S. Lang (BMC, Basel Switzerland), the provision of the simulation data of the tumor by D. Szczerba (ETH Zrich, Switzerland), and the support of A. Lareida (BMC, Basel Switzerland) preparing the tomography data and the scheme on the inner ear are gratefully acknowledged.

The beamtimes were granted on the basis of the following approved beamtime applications: “Microcomputed tomography of human brain tissue using grating-based phase contrast” (MD-328, ESRF Grenoble France), “Microcomputed tomography of human brain for the nonrigid registration of histological slices” (II-20060035 EC, HASYLAB at DESY Hamburg Germany), “Remineralization studies of dentin by microcomputed tomography,” and “Three-dimensional high-resolution imaging the cellular structure of the human inner ear” (SLS at PSI, Villigen Switzerland).

References

  1. 1.
    J. Als-Nielsen, G. Materlik, Phys. Today 48 (11), 34 (1995)CrossRefGoogle Scholar
  2. 2.
    W.C. Röntgen, Ann. Phys. 64, 1 (1898)CrossRefGoogle Scholar
  3. 3.
    A.C. Kak, M. Slaney (ed.), Computerized Tomographic Imaging (IEEE Press, New York, 1988)zbMATHGoogle Scholar
  4. 4.
    E. Jöhnsson, Dissertation, University of Uppsala (1928)Google Scholar
  5. 5.
    L. Grodzins, Nucl. Instrum. Methods 206, 541 (1983)CrossRefGoogle Scholar
  6. 6.
    B.A. Lloyd, D. Szczerba, M. Rudin, G. Székely, Philos. Trans. R. Soc. London, Ser. A 366 (1879), 3301 (2008)Google Scholar
  7. 7.
    S. Lang, M. Dominietto, B. Müller, in Journal of Physics: Conference Series 186, Zurich, 2009, ed. by C. Quitmann, C. David, F. Nolting, F. Pfeiffer and M. StampanoniGoogle Scholar
  8. 8.
    B. Müller, S. Lang, M. Dominietto, M. Rudin, G. Schulz, H. Deyhle, M. Germann, F. Pfeiffer, C. David, T. Weitkamp, in Proceedings of SPIE 7078, San Diego, 2008, ed. by S.R. StockGoogle Scholar
  9. 9.
    B. Müller, J. Fischer, U. Dietz, P. Thurner, F. Beckmann, Nucl. Instrum. Methods Phys. Res., Sect. B 246, 254 (2006)Google Scholar
  10. 10.
    T. Krucker, A. Lang and E.P. Meyer, Microsc. Res. Tech. 69 (2), 138 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Stampanoni, A. Groso, G. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Boher, D. Meister, M. Lange, R. Abela, in Proceedings of SPIE 6318, San Diego, 2006, ed. by U. BonseGoogle Scholar
  12. 12.
    K. Sunnegardh-Grönberg, J.W.V. VanDijken, U. Funegard, J. Dent. 37, 673 (2009)CrossRefGoogle Scholar
  13. 13.
    J.-P. VanNieuwenhuysen, W. D’Hoore, J. Carvalho, V. Qvist, J. Dent. 31, 395 (2003)CrossRefGoogle Scholar
  14. 14.
    T. Waltimo, T.J. Brunner, M. Vollenweider, W.J. Stark, M. Zehnder, J. Dent. Res. 86 (8), 754 (2007)CrossRefGoogle Scholar
  15. 15.
    F. Kernen, T. Waltimo, H. Deyhle, F. Beckmann, W. Stark, B. Müller, in Proceedings of SPIE 7078, San Diego, 2008, ed. by S. StockGoogle Scholar
  16. 16.
    F. Beckmann, J. Herzen, A. Haibel, B. Müller, A. Schreyer, in Proceedings of SPIE 7078, San Diego, 2008, ed. by S. StockGoogle Scholar
  17. 17.
    B. Müller, P. Thurner, F. Beckmann, T. Weitkamp, C. Rau, R. Bernhardt, E. Karamuk, L. Eckert, S. Buchloh, E. Wintermantel, D. Scharnweber, H. Worch, in Proceedings of SPIE 4503, San Diego, 2002, ed. by U. BonseGoogle Scholar
  18. 18.
    A. Lareida, F. Beckmann, A. Schrott-Fischer, R. Glueckert, W. Freysinger, B. Müller, J. Microsc. 234, 95 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Müller, A. Lareida, F. Beckmann, G.M. Diakov, F. Kral, F. Schwarm, R. Stoffner, A.R. Gunkel, R. Glueckert, A. Schrott-Fischer, J. Fischer, A. Andronache, W. Freysinger, in Proceedings of SPIE 6318, San Diego, 2006, ed. by U. BonseGoogle Scholar
  20. 20.
    T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, E. Ziegler, Opt. Expr. 13, 6296 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    T. Weitkamp, C. David, C. Kottler, O. Bunk, F. Pfeiffer, in Proceedings of SPIE 6318, San Diego, 2006, ed. by U. BonseGoogle Scholar
  22. 22.
    T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, J. Baruchel, AIP Conf. Proc. 1221, 33 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    P. Thurner, F. Beckmann, B. Müller, Nucl. Instrum. Methods Phys. Res., Sect. B 225, 599 (2004)Google Scholar
  24. 24.
    G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, B. Müller, J. R. Soc. Interface 7, 1665 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Herzen, F. Beckmann, T. Donath, M. Ogurreck, C. David, F. Pfeiffer, J. Mohr, E. Reznikova, S. Riekehr, A. Haibel, G. Schulz, B. Müller, A. Schreyer, in Proceedings of SPIE 7804, San Diego, 2010, ed. by S.R. StockGoogle Scholar
  26. 26.
    B. Müller, G. Schulz, J. Herzen, S. Mushkolaj, T. Bormann, F. Beckmann, K. Pschel, in Proceedings of SPIE 7804, San Diego, 2010, ed. by S.R. StockGoogle Scholar
  27. 27.
    B. Müller, SPIE Newsroom (2010) DOI 10.1117/2.1201009.003123Google Scholar
  28. 28.
    H.S. Mansur, R.L. Oréfice, A.A.P. Mansur, Polymer 45, 7194 (2004)CrossRefGoogle Scholar
  29. 29.
    J. Lipfert, L. Columbus, V. B. Chuc, S. Doniach, J. Appl. Crystallogr. 40, 235 (2007)CrossRefGoogle Scholar
  30. 30.
    G. Falzon, S. Pearson, R. Murison, C. Hall, K. Siu, A. Evans, K. Rogers, R. Lewis, Phys. Med. Biol. 51, 2465 (2006)CrossRefGoogle Scholar
  31. 31.
    M. De Felici, R. Felici, C. Ferrero, A. Tartari, M. Gambaccini, S. Finet, Phys. Med. Biol. 53, 5675 (2008)CrossRefGoogle Scholar
  32. 32.
    J.H. Kinney, J.A. Pople, G.W. Marshall, S.J. Marshall, Calcif. Tissue Int. 69, 31 (2001)CrossRefGoogle Scholar
  33. 33.
    H. Deyhle, O. Bunk, S. Buser, G. Krastl, N. Zitzmann, B. Ilgenstein, F. Beckmann, F. Pfeiffer, R. Weiger, B. Müller Proceedings of SPIE 7401, San Diego, 2009 ed. by R.J. Martn-Palma and A. LakhtakiaGoogle Scholar
  34. 34.
    O. Paris, I. Z̆izăk, H. Lichtenegger, P. Roschger, K. Klaushofer, P. Fratzl Cell. Mol. Biol. 46, 993 (2000)Google Scholar
  35. 35.
    A. Cedola, M. Mastrogiacomo, S. Lagomarsino, R. Cancedda, C. Giannini, A. Guagliardi, M. Ladisa, M. Burghammer, F. Rustichelli, V. Komlev, Spectrochim. Acta B. 62, 642 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    O. Bunk, M. Bech, T.H. Jensen, R. Feidenhansl, T. Binderup, A. Menzel, F. Pfeiffer, New J. Phys. 11, 123016 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, B. Henrich, I. Johnson, A. Mozzanica, C.M. Schlepütz, P.R. Willmott, B. Schmitt, J. Synchrotron. Radiat. 16, 368 (2009)CrossRefGoogle Scholar
  38. 38.
    A. Vieira, R. Hancock, H. Limeback, M. Schwartz, M. Grynpas, J. Dent. Res. 82, 909 (2003)CrossRefGoogle Scholar
  39. 39.
    M.V. Stack, Ann. NY. Acad. Sci. 60, 585 (1955)ADSCrossRefGoogle Scholar
  40. 40.
    M. Balooch, S. Habelitz, J.H. Kinney, S.J. Marshall, G.W. Marshall, J. Struct. Biol. 162, 404 (2008)CrossRefGoogle Scholar
  41. 41.
    W. Friedrich, P. Knipping, M. Laue, Ann. d. Phys. 346, 971 (1913)ADSCrossRefGoogle Scholar
  42. 42.
    S.R. Stock, A.E. Vieira, A.C. Delbem, M.L. Cannon, X. Xiao, F.D. Carlo, J. Struct. Biol. 161, 144 (2008)CrossRefGoogle Scholar
  43. 43.
    J. Radon, Ber. Verh. Konigl. Sachs. Ges. Wiss. 69, 262 (1917)Google Scholar
  44. 44.
    B. Müller, H. Deyhle, D. Bradley, M. Farquharson, G. Schulz, M. Müller-Gerbl, O. Bunk, Eur. J. Nanomed. 3, 30 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Biomaterial Science CenterUniversity BaselBaselSwitzerland

Personalised recommendations