Biofunctionalization of Surfaces with Peptides, Proteins, or Subcellular Organelles: Single-Molecule Studies and Nanomedical Approach

  • A. Katranidis
  • T. Choli-Papadopoulou
Part of the NanoScience and Technology book series (NANO)


Immobilization of biologically active proteins and enzymes on surfaces is very important for the production of biofunctionalized surfaces for applications in medicine such as biosensors and in the diagnostics field. There are various approaches to immobilize and control the release of peptides/proteins from different surfaces. The identification of successful techniques to functionalize a particular material is a challenge. On the other hand, biomaterials are at the moment of great benefit for medicinal purposes and a lot of knowledge from different fields is required in order to design biomimetic scaffolds or biomimetic materials. The used methodologies are different for different materials and are mainly based on the special chemistry of the surfaces. Peptides with distinct properties are desired instead of entire proteins. However, in some cases, proteins cannot be replaced by peptide segments and therefore biochemical knowledge, such as in protein and/or genetic engineering is required.


Folding Intermediate Nascent Chain Biomimetic Material Nascent Polypeptide Chain Biomimetic Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Kroger, F. Hucho, H Vogel, Anal. Chem. 71, 3157–3165 (1999)CrossRefGoogle Scholar
  2. 2.
    D. Kroger, A. Katerkamp, R. Renneberg, K. Cammann, Biosens. Bioelectron. 13, 1141–1147 (1998)Google Scholar
  3. 3.
    J. Wang, Electrophoresis 23, 713–718 (2002)CrossRefGoogle Scholar
  4. 4.
    J. Mansfeld, R. Ulbrich-Hofmann, Biotechnol. Appl. Biochem. 32, 189–195 (2000)CrossRefGoogle Scholar
  5. 5.
    J.J. Gooding, D.B. Hibbert, Trends Anal. Chem. 18, 525–533 (1999)CrossRefGoogle Scholar
  6. 6.
    D.A. Butterfield, D. Bhattacharyya, S. Daunert, L. Bachas, J. Membr. Sci. 181, 29–37 (2001)Google Scholar
  7. 7.
    H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R.A. Dean, M. Gerstein, M. Snyder, Science 293, 2101–2105 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    P. Mitchell, Nat. Biotechnol. 20, 225–229 (2002)CrossRefGoogle Scholar
  9. 9.
    D.S. Wilson, S. Nock, Curr. Opin. Chem. Biol. 6, 81–85 (2002)CrossRefGoogle Scholar
  10. 10.
    M. Nishi, J. Kobayashi, S. Pechmann, M. Yamato, Y. Akiyama, A. Kikuchi, K. Uchida, M. Textor, H. Yajima, T. Okano, Biomaterials 36, 5471–5476 (2007)CrossRefGoogle Scholar
  11. 11.
    Norde, W. Adv. Colloid Interface Sci. 25, 267–340 (1986). 10.1021/la0482812 CCC: $27.50 © 2004 American Chemical Society Published on Web 10/30/2004CrossRefGoogle Scholar
  12. 12.
    W. Huang, J. Wang, D. Bhattacharyya, L.G. Bachas, Anal. Chem. 69, 4601–4607 (1997)CrossRefGoogle Scholar
  13. 13.
    J. Turkova, J. Chromatogr. B 722, 11–31 (1999)Google Scholar
  14. 14.
    J. Groll, E.V. Amirgoulova, T. Ameringer, C.D. Heyes, C. Rocker, G.U. Nienhaus, M. Moller, J. Am. Chem. Soc. 126, 4234–4239 (2004)CrossRefGoogle Scholar
  15. 15.
    A. Chapman-Smith, J.E. Cronan, Trends Biochem. Sci. 24, 359–363 (1999)CrossRefGoogle Scholar
  16. 16.
    A. Chapman-Smith, T.D. Mulhern, F. Whelan, J.E. Cronan, J.C. Wallace, Protein Sci.10, 2608–2617 (2001)CrossRefGoogle Scholar
  17. 17.
    D. Beckett, E. Kovaleva, P.J. Schatz, Protein Sci. 8, 921–929 (1999)CrossRefGoogle Scholar
  18. 18.
    V.A. Kolb, E.V. Makeyev, A.S. Spirin, EMBO J.13, 3631–3637 (1994)Google Scholar
  19. 19.
    G. Kramer, V. Ramachandiran, B. Hardesty, Int. J. Biochem. Cell Biol. 33, 541–553 (2001)CrossRefGoogle Scholar
  20. 20.
    A.N. Fedorov, T.O. Baldwin, J. Biol. Chem. 272, 32715–32718 (1997)Google Scholar
  21. 21.
    J. Frydman, H. Erdjument-Bromage, P. Tempst, F.U. Hartl, Nat. Struct. Biol. 6, 697–705 (1999)CrossRefGoogle Scholar
  22. 22.
    M.S. Evans,, T.F.t. Clarke, P.L. Clark, Protein Pept. Lett. 12, 189–95 (2005)Google Scholar
  23. 23.
    D.E. Feldman, J. Frydman, Curr. Opin. Struct. Biol. 10, 26–33 (2000)CrossRefGoogle Scholar
  24. 24.
    S.A. Etchells, F.U. Hartl, Nat. Struct. Mol. Biol. 11, 391–392 (2004)CrossRefGoogle Scholar
  25. 25.
    H. Himeno, M. Sato, T. Tadaki, M. Fukushima, C. Ushida, A. Muto, J. Mol. Biol. 268, 803–808 (1997)Google Scholar
  26. 26.
    K.C. Keiler, P.R. Waller, R.T. Sauer, Science 271, 990–993 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    D. Dulebohn, J. Choy, T. Sundermeier, N. Okan, A.W. Karzai, Biochemistry 46, 4681–4693 (2007)CrossRefGoogle Scholar
  28. 28.
    L. Cognet, G.S. Harms, G.A. Blab, P.H.M. Lommerse, T. Schmidt, Appl. Phys. Lett. 77, 4052–4054 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    A. Katranidis, Ph.D. dissertation 2009 Aristotle University of Thessaloniki and Forschungszentrum JuelichGoogle Scholar
  30. 30.
    R.Y. Tsien, Annu. Rev. Biochem. 67, 509–544 (1998)CrossRefGoogle Scholar
  31. 31.
    A. Katranidis, D. Atta, R. Schlesinger, K.H. Nierhaus, T. Choli-Papadopoulou, I. Gregor, M. Gerrits, G. Buldt, J. Fitter, Angew. Chem. Int. Ed. Engl. 48, 1758–1761 (2009)CrossRefGoogle Scholar
  32. 32.
    S.E. Sakiyama-Elbert, J.A. Hubbell Annu. Rev. Mater. Res. 31, 183–201 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    R. Langer, Acc. Chem. Res. 33 94–101 (2000)CrossRefGoogle Scholar
  34. 34.
    R.G. Lebaron, K.A. Athanasiou Tissue Eng. 6, 85–103 (2000)Google Scholar
  35. 35.
    J.A. Hubbell Bioactive biomaterials. Curr. Opin. Biotechnol. 10, 123–129 (1999)Google Scholar
  36. 36.
    M.D. Pierschbacher, E. Ruoslahti, Nature 309(5963) 30–33 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    M.C. Porté-Durrieu et al., J. Biomed. Mater. Res. 46(3) 368–375 (1999)CrossRefGoogle Scholar
  38. 38.
    M.C. Porte-Durrieu et al., Biomaterials 25(19) 4837–4846 (2004)CrossRefGoogle Scholar
  39. 39.
    K.E. Michael et al., Langmuir 19(19) 8033–8040 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    K.E. Healy et al., Biomaterials 17(2) 195–208 (1996)CrossRefGoogle Scholar
  41. 41.
    J.S. Bennet, G. Vilaire, D.B. Cines J. Biol. Chem. 257, 8049–8054 (1982)Google Scholar
  42. 42.
    Kornberg LJ, Earp HS, Turner CE, Prockop C, Juliano RL. Proc. Natl. Acad. Sci. USA 88, 8392–8396 (1991)ADSCrossRefGoogle Scholar
  43. 43.
    M.A. Schwartz, C. Lechene, D.E. Ingber Proc. Nat.l Acad. Sci. USA 88, 7849–7853 (1991)Google Scholar
  44. 44.
    Z. Werb, P.M. Tremble, O. Behrendtsen, E. Crowly, C.H. Damsky, J. Cell. Biol. 109, 877–889 (1989)Google Scholar
  45. 45.
    A. Yamada, T. Nikaido, Y. Nojima, S.F. Schlossman, C. Morimoto, J. Immunol. 146, 53–56 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratory of Biochemistry, School of ChemistryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Forschungszentrum Juelich, ICS-5: Molecular BiophysicsJuelichGermany

Personalised recommendations