Nanomedicine Pillars and Monitoring Nano–biointeractions

  • V. Karagkiozaki
  • S. Logothetidis
  • E. Vavoulidis
Part of the NanoScience and Technology book series (NANO)


The current revolution in medicine is strongly associated with the availability of new tools, methods and materials that enable the visualization and handling of molecules and even atoms in order to explore the etiology of many diseases and foster the insights within the biological nano-world. This chapter describes the main nanomedicine pillars that involve nanodiagnostics, targeted drug delievery and regenerative medicine. It gives an overview of key nanotechnologies that will advance the diagnosis and treatment of various diseases. Several experiments are employed to help the reader to understand how nanomedicine can advance mainly the study of mechanisms of bio and non- bio interactions for the design and development of highly performed implants. The hazards and risks for nanomedicines and the future challenges and perspectives of their application in clinical practice will also be discussed.


Atomic Force Microscopy Atomic Force Microscopy Image Regenerative Medicine Titanium Nitride Target Drug Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Kawasaki, A. Player, Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer, Nanomed. Nanotechnol. Biol. Med. 1, 101–109 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Campos, R. Penson, R. Aisha, A. Mays, S. Ross, et al., The clinical utility of liposomal doxorubicin in recurrent ovarian cancer, Gynecol Oncol. 81, 206–212 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Nagayasu, K. Uchiyama, H. Kiwada, The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs, Adv. Drug Deliv. Rev. 40, 75–87 (1999)CrossRefGoogle Scholar
  4. 4.
    P. Goyal, K. Goyal, S. Kumar, A. Singh, et al., Liposomal drug delivery systems – Clinical applications, Acta Pharm. 55, 1–25 (2005)Google Scholar
  5. 5.
    A. Kim, E. Lee, S. Choi, C. Kim, In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome, Biomaterials 25, 305–313 (2004)CrossRefGoogle Scholar
  6. 6.
    V. Sirani, D. Koktysh, B. Yun, R. Matts, et al., Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratifield LBL films, Nano Lett. 3, 1177–1182 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Zhang, N. Kohler, M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 23, 1553–1561 (2002)CrossRefGoogle Scholar
  8. 8.
    O. Salata, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2, 3–6 (2004)CrossRefGoogle Scholar
  9. 9.
    K. Win, S. Feng, In vitro and in vivo studies on vitamin E TPGS-emulsified poly (d,l-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation, Biomaterials 27, 2285–2291 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Chen, C. Tsai, P. Huang, M. Chang, et al., Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lungtumor model, Mol. Pharm. 4, 713–722 (2007)CrossRefGoogle Scholar
  11. 11.
    B. Wilson, M. Samanta, K. Santh, K. Kumar, et al., Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease, Brain Res. 1200, 159–168 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Shahverdi, A. Fakhimi, H. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli, J. Nanomed. 3, 168–171 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B Biointerfaces 75, 1–18 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Unfried, C. Albrecht, L. Klotz, A. Von Mikecz, A. Grether, et al., Cellular responses to nanoparticles: Target structures and mechanisms, Nanotoxicology 1, 52–71 (2007)CrossRefGoogle Scholar
  15. 15.
    D. Tomalia, Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging, Nanomed. Nanotechnol. Biol. Med. 2, 309 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Caminade, R. Laurent, J. Majoral, Characterization of dendrimers, Adv. Drug Deliv. Rev. 57, 2130–2146 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Svenson, D. Tomalia, Dendrimers in biomedical applications – Reflections on the field, Adv. Drug Deliv. Rev. 57, 2106–2129 (2005)CrossRefGoogle Scholar
  18. 18.
    K. Ong, A. Jenkins, R. Cheng, D. Tomalia, et al., Dendrimer enhanced immunosensors for biological detection, Anal. Chim. Acta. 444, 143–148 (2001)CrossRefGoogle Scholar
  19. 19.
    U. Boas, P. Hegaard, Dendrimers in drug research, Chem. Soc. Rev. 33, 43–63 (2004)CrossRefGoogle Scholar
  20. 20.
    N. Kam, M. O’Connel, J. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. USA 102, 11600–11605 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    P. Tran, L. Zhang, T. Webster, Carbon nanofibers and nanotubes in regenerative medicine, Adv. Drug Deliv. Rev. 61, 1097–1114 (2009)CrossRefGoogle Scholar
  22. 22.
    N. Kam, Z. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway, Angew. Chem. Internat. Ed. 45, 577–581 (2006)CrossRefGoogle Scholar
  23. 23.
    A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9, 674–679 (2005)CrossRefGoogle Scholar
  24. 24.
    J. Stoltz, Regenerative medicine: from engineering to clinical applications, J. Biomech. 39, 54 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Sundelacruz, D. Kaplan, Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine, Semin. Cell Dev. Biol. 20, 646–655 (2009)CrossRefGoogle Scholar
  26. 26.
    P. Ma, Tissue engineering, in Encyclopedia of Polymer Science and Technology, vol. 12, 3rd. edn. Ed. by J.I. Kroschwitz (Wiley, Hoboken, NJ, 2005), pp. 261–291Google Scholar
  27. 27.
    S. Stephan, S. Ball, M. Williamson, D. Bax, et al., Cell – matrix biology in vascular tissue engineering, J. Anat. 209, 495–502 (2006)CrossRefGoogle Scholar
  28. 28.
    B. Isenberg, C. Williams, R. Tranquillo, Small, diameter artificial arteries engineered in vitro, J. Circ. Res. 98, 25–35 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Ratner, Proteins controlled with precision at organic, polymeric, and biopolymer interfaces for tissue engineering and regenerative medicine, Principles Regenerat. Med. 1, 734–742 (2008)CrossRefGoogle Scholar
  30. 30.
    E. Anitua, M. Sanchez, G. Orive, Potential of endogenous regenerative technology for in situ regenerative medicine, Adv. Drug Deliv. Rev. 62, 741–752 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Murata, S. Tohyama, K. Fukuda, Impacts of recent advances in cardiovascular regenerative medicine on clinical therapies and drug discovery, J. Pharmacol. Therapeut. 126, 109–118 (2010)CrossRefGoogle Scholar
  32. 32.
    Shupe T, Petersen B. Potential applications for cell regulatory factors in liver progenitor cell therapy. Inter J of Biochemistry & Cell Biology, 43, 214–221 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Furth, A. Atala, Current and future perspectives of regenerative medicine, in Principles of Regenerative Medicine, 1st edn. (Academic, New York, 2008), pp. 2–15Google Scholar
  34. 34.
    N. Kimelman, G. Pelled, G. Helm, et al., Review: gene-and stem cell-based therapeutics for bone regeneration and repair, Tissue Eng. 13, 1135–1150 (2007)CrossRefGoogle Scholar
  35. 35.
    S. Li, L. Wang, H. Jiang, et al., Stem cell engineering for treatment of heart diseases: potentials and challenges, Cell Biol. Int. 33, 255–267 (2009)CrossRefGoogle Scholar
  36. 36.
    D. Sheyn, O. Mizrahi, S. Benjamin, Z. Gazit, et al., Genetically modified cells in regenerative medicine and tissue engineering, Adv. Drug Deliv. Rev. 62, 683–698(2010)CrossRefGoogle Scholar
  37. 37.
    R. Jaenisch, R. Young, Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming, Cell 132, 567–582 (2008)CrossRefGoogle Scholar
  38. 38.
    B. Feng, J. Ng, J. Heng, H. Ng, Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells, Cell Stem Cell 4, 301–312 (2009)CrossRefGoogle Scholar
  39. 39.
    I. Martin, D. Wendt, M. Heberer, The role of bioreactors in tissue engineering, Trends Biotechnol. 22, 80–86 (2004)CrossRefGoogle Scholar
  40. 40.
    A. Khademhosseini, R. Langer, J. Borenstein, J. Vacanti, Microscale technologies for tissue engineering and biology, Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    J. Schakenraad, H. Busscher, Cell–polymer interactions: The influence of protein adsorption, Colloids Surf. 42, 331–343 (1989)Google Scholar
  42. 42.
    P. Yang, N. Huang, Y.X. Leng, J.Y. Chen, K.Y. Fu, S.C.H. Kwok, P.K. Leng, Y. Chu, Activation of platelets adhered on amorphous hydrogenated carbon films synthesized by plasma immersion ion implantation-deposition, Biomaterials 24, 2821–29 (2003)CrossRefGoogle Scholar
  43. 43.
  44. 44.
    V. Shahin, N. Barrera, Providing unique insight into cell biology via atomic force microscopy, Int. Rev. Cytol. 265, 227–252 (2008)CrossRefGoogle Scholar
  45. 45.
    N. Santos, M. Castanho, An overview of the biophysical applications of atomic force microscopy, Biophys. Chem. 107, 133–149 (2004)CrossRefGoogle Scholar
  46. 46.
    C. Yip, Atomic force microscopy of macromolecular interactions, Curr. Opin. Struct. Biol. 11, 567–572 (2001)MathSciNetCrossRefGoogle Scholar
  47. 47.
    D. Johnson, N. Hilal, R. Bowen, Basic principles of atomic force microscopy, Atom. Force Microsc. Process Eng. 1–30 (2009)Google Scholar
  48. 48.
  49. 49.
    D. Butterfield, T. Reed, F. Shelley, S. Newman, R. Sultana, Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment, Free Radic. Biol. Med. 43, 658–677 (2007)CrossRefGoogle Scholar
  50. 50.
    S. Sun, Y. Yue, X. Huang, D. Meng, Protein adsorption on blood-contact membranes, J. Membrane Sci. 222, 3–18 (2003)CrossRefGoogle Scholar
  51. 51.
    X.D. Zhu, H.S. Fan, Y.M. Xiao, et al., Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo, Acta Biomater. 5, 1311–1318 (2009)CrossRefGoogle Scholar
  52. 52.
    P. Cacciafesta, A. Humphris, K. Jandt, M. Miles, Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy, Langmuir 16, 8167–8175 (2000)CrossRefGoogle Scholar
  53. 53.
    J. Ortega-Vinuesa, P. Tengvall, et al., Aggregation of HSA, igg, and fibrinogen on methylated silicon surfaces, J. Colloid Interface Sci. 207, 228–239 (1998)CrossRefGoogle Scholar
  54. 54.
    K. Mitsakakis, S. Lousinian, S. Logothetidis, Early stages of human plasma proteins adsorption probed by atomic force microscope, Biomol. Eng. 24, 119–124 (2007)CrossRefGoogle Scholar
  55. 55.
    S. Logothetidis, Haemocompatibility of carbon based thin films, Diamond Relat. Mater. 16, 1847–1857 (2007)CrossRefGoogle Scholar
  56. 56.
    S. Lousinian, S. Kassavetis, S. Logothetidis, Surface and temperature effect on fibrinogen adsorption to amorphous hydrogenated carbon thin films, Diamond Relat. Mater. 16, 1868–1874 (2007)CrossRefGoogle Scholar
  57. 57.
    J.H. Hartwig, Platelet structure, in Platelets, ed. by A.D. Michelson (Academic, New York, 2002), pp. 37–45Google Scholar
  58. 58.
    T.I. Okpalugo, A.A. Ogwu, P.D. Maguire, J.A. McLaughlin, Platelet adhesion on silicon modified hydrogenated amorphous carbon films, Biomaterials 25, 239–245 (2004)CrossRefGoogle Scholar
  59. 59.
    V. Karagkiozaki, S. Logothetidis, S. Lousinian, G. Giannoglou, Impact of surface electric properties of carbon-based thin films on platelets activation for nano-medical and nano-sensing applications, Int. J. Nanomed. 3, 461–469 (2008)Google Scholar
  60. 60.
    T.S. Tsapikouni, Y.F. Missirlis, pH and ionic strength effect on single fibrinogen molecule adsorption on mica studied with AFM, Colloid Surf. B: Biointerfaces 57, 89–96 (2007)CrossRefGoogle Scholar
  61. 61.
    Noy A. Interactions at solid-fluid interfaces, In: Liu, Xiang Yang; De Yoreo, James J. (Editors), Nanoscale structure and assembly at solid-fluid interfaces. Kluwer Academic Publishers, USA. Volume I, 2004, p. 57–64.Google Scholar
  62. 62.
    R. Mandic, C. Opper, J. Krappe, W. Wesemann, Platelet sialic acid as a potential pathogenic factor in coronary heart disease, Thrombosis Res. 106, 137–141 (2002)CrossRefGoogle Scholar
  63. 63.
    D. Müller, K. Anderson, Biomolecular imaging using atomic force microscopy, Trends Biotechnol. 20, 545–49 (2002)CrossRefGoogle Scholar
  64. 64.
    M. Hussain, A. Agnihotri, C. Siedlecki, AFM imaging of ligand binding to platelet integrin alphaiibbeta3 receptors reconstituted into planar lipid bilayers, Langmuir 19(21), 6979–86 (2005)CrossRefGoogle Scholar
  65. 65.
    V. Karagkiozaki, S. Logothetidis, G. Giannoglou, Advances in stent coating technology via nanotechnology tools and process, Eur. J. Nanomed. 1, 24–28 (2008)CrossRefGoogle Scholar
  66. 66.
    P.D. Maguire, J.A. McLaughlin, T.I.T. Okpalugo, P. Lemoine, P. Papakonstantinou, E.T. McAdams, M. Needham, A. Ogwu, et al., Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires, Diamond Relat. Mater. 14, 1277–88 (2005)CrossRefGoogle Scholar
  67. 67.
    V. Karagkiozaki, S. Logothetidis, N. Kalfagiannis, S. Lousinian, G.A.F.M. Giannoglou, Probing platelets activation behavior on titanium nitride nanocoatings for biomedical applications, J. Nanomed. Nanotechnol. Biol. Med. 5, 64–72 (2009)CrossRefGoogle Scholar
  68. 68.
    V. Karagkiozaki, S. Logothetidis, A. Laskarakis, G. Giannoglou, S.A.F.M. Lousinian, Study of the thrombogenicity of carbon-based coatings for cardiovascular applications, Mater. Sci. Eng. B 152, 16–21 (2008)CrossRefGoogle Scholar
  69. 69.
    V. Karagkiozaki, S. Logothetidis, S. Kassavetis, S. Lousinian, Nanoscale characterization of biological and mechanical profile of carbon nanocoatings for stents, Eur. J. Nanomed. 2, 14–21 (2009)Google Scholar
  70. 70.
    S. Goodman, T. Grasel, S. Cooper, R.J. Albrecht, Biomed. Mater. Res. 23, 105 (1989)CrossRefGoogle Scholar
  71. 71.
    V. Karagkiozaki, S. Logothetidis, S. Kassavetis, G. Giannoglou, Nanomedicine for the reduction of the thrombogenicity of stent coatings, Int. J. Nanomed. 5, 239–248 (2010)Google Scholar
  72. 72.
    S. Choudhary, M. Berhe, K. Haberstroh, T. Webster, Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo, Int. J. Nanomed. 1, 41–49 (2006)CrossRefGoogle Scholar
  73. 73.
    P. Yang, N. Huang, Y.X. Leng, J.Y. Chen, K.Y. Fu, S.C.H. Kwok, Y. Leng, P.K. Chu, Activation of platelets adhered on amorphous hydrogenated carbon films synthesized by plasma immersion ion implantation-deposition, Biomaterials 24, 2821–29 (2003)CrossRefGoogle Scholar
  74. 74.
    L. Leung, Role of thrombospondin in platelet aggregation, J. Clin. Invest. 74, 1764–1772 (1984)ADSCrossRefGoogle Scholar
  75. 75.
    J. Coligan, H. Slayter, Structure of thrombospondin, J. Biol. Chem. 259, 3944–3948 (1984)Google Scholar
  76. 76.
    H.C. Fischer, W.C. Chan, Nanotoxicity: the growing need for in vivo study, Curr. Opin. Biotechnol. 18, 565–571 (2007)CrossRefGoogle Scholar
  77. 77.
    P. Borm, F.C. Klaessig, T.D. Landry, B. Moudgil, et al., Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles, Toxicol. Sci. 90, 23–32 (2006)CrossRefGoogle Scholar
  78. 78.
    A. Nel, T. Xia, L. Maedler, N. Li, Toxic potential of materials at the nanolevel, Science 311, 622–627 (2006)ADSCrossRefGoogle Scholar
  79. 79.
    T. Xia, M. Kovochich, J. Brant, M. Hotze, et al., Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett. 6, 1794–1807 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    S. Caruthers, S. Wickline, G. Lanza, Nanotechnological applications in medicine, Curr. Opin. Biotechnol. 18, 26–30 (2007)CrossRefGoogle Scholar
  81. 81.
    G. Oberdörster, A. Maynard, et al., Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy, Particle Fibre Toxicol. 2, 1–35 (2005)CrossRefGoogle Scholar
  82. 82.
    J. Ryman Rasmussen, P. Jessica, et al., Penetration of intact skin by quantum dots with diverse physicochemical properties, Toxic. Sci. 91, 159–165 (2006)CrossRefGoogle Scholar
  83. 83.
    S. Sinkle, J. Antonini, B. Rich, et al., Skin as a route of exposure and sensitization in chronic Beryllium disease, Environ. Health Perspect. 111, 1202–1218 (2003)CrossRefGoogle Scholar
  84. 84.
    J. Ryman-Rasmussen, J. Riviere, N. Monteiro-Riviere, Variables influencing interactions of untargeted quantum dots nanoparticles with skin cells and identification of biochemical modulators, Nano Lett. 7, 1344–134 (2007)ADSCrossRefGoogle Scholar
  85. 85.
    Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nat. Nano 2, 47–52 (2007)CrossRefGoogle Scholar
  86. 86.
    S. Hong, P.R. Leroueil, E.K. Janus, J.L. Peters, M.M. Kober, et al., Interaction of polycationic polymers with supported lipid biolayers and cells: Nanoscale hole formation and enhanced membrane permeability, Bioconj. Chem. 17, 728–734 (2006)CrossRefGoogle Scholar
  87. 87.
    P.R. Leroueil, S. Hong, A. Mecke, J.R. Baker, et al., Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face, Acc. Chem. Res. 40, 335–342 (2007)CrossRefGoogle Scholar
  88. 88.
    D. Drobne, V. Kralj-Iglic, Lipid membranes as tools in nanotoxicity studies, Adv. Planar Lipid Bilayers Liposomes. 10, 121–134 (2009)CrossRefGoogle Scholar
  89. 89.
    M. Geiser, B. Rothen-Rutishauser, N. Kapp, S. Schurch, et al., Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells, Environ. Health Perspect. 113, 1555–1560 (2005)CrossRefGoogle Scholar
  90. 90.
    L. Liu, T. Takenaka, A. Zinchenko, N. Chen, et al., Cationic silica nanoparticles are efficiently transferred into mammalian cells, Int. Symp. Micro-Nano Mechatron. Hum. Sci. 1–2, 281–285 (2007)CrossRefGoogle Scholar
  91. 91.
    M. Chen, A. von Mikecz, Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles, Exp. Cell Res. 305, 51–62 (2005)CrossRefGoogle Scholar
  92. 92.
    N. Singh, B. Manshian, G. Jenkins, et al., nanogenotoxicology: The DNA damaging potential of engineered nanomaterials, Biomaterials 30, 3891–3914 (2009)CrossRefGoogle Scholar
  93. 93.
    N. Li, C. Sioutas, A. Cho, et al., Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage, Environ. Health Perspect. 111, 455–460 (2003)CrossRefGoogle Scholar
  94. 94.
    Y. Pan, A. Leifert, D. Ruau, S. Neuss, et al., Gold nanoparticles of diameter 1,4 nm trigger necrosis by oxidative stress and mitochondrial damage, Small 5, 2067–2076 (2009)CrossRefGoogle Scholar
  95. 95.
    L. Canesi, C. Ciacci, D. Vallotto, G. Gallo, A. Marcomini, G. Pojana, In vitro effects of suspensions of selected nanoparticles (C60 fullerene, tio2, sio2) on Mytilus hemocytes, Aquat. Toxicol. 31(96), 151–158 (2010)CrossRefGoogle Scholar
  96. 96.
    A. Nel, et al., Toxic potential of materials at the nanolevel, Science 311, 622–627 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    A. Maynard, Nanotechnology: assessing the risks, Nano Today. 1, 22–33 (2006)CrossRefGoogle Scholar
  98. 98.
    S. Naqvi, M. Samim, et al., Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress, Int. J. Nanomed. 5, 983–989 (2010)CrossRefGoogle Scholar
  99. 99.
    M. Auffan, J. Rose, J. Bottero, et al., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat. Nanotechnol. 4, 634–642 (2009)ADSCrossRefGoogle Scholar
  100. 100.
    C. Poland, R. Duffin, I. Kinloch, et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol. 3, 423–428 (2008)CrossRefGoogle Scholar
  101. 101.
    K. Kostarelos, The long and short of carbon nanotube toxicity, Nat. Biotechnol. 26, 774–776 (2008)CrossRefGoogle Scholar
  102. 102.
    V. Kagan, N. Konduru, W.W. Feng, et al., Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation, Nat. Nanotechnol. 1–6 (2010)Google Scholar
  103. 103.
    P. Dwivedi, A. Misra, R. Shanker, M. Das, Are nanomaterials a threat to the immune sysyem? Nanotoxicology 3, 19–26 (2009)CrossRefGoogle Scholar
  104. 104.
    G. Tepe, J. Schmehl, P. Hans, et al., Reduced thrombogenicity of nitinol stents – In vitro evaluation of different surface modifications and coatings, Biomaterials 27, 643–650 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. Karagkiozaki
    • 2
  • S. Logothetidis
    • 1
  • E. Vavoulidis
    • 1
  1. 1.Lab for Thin Films – Nanosystems and Nanometrology (LTFN), Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Lab for Thin Films – Nanosystems and Nanometrology (LTFN), Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations