Skip to main content

Introduction

  • Chapter
  • First Online:
Nanophotonic Fabrication

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 1050 Accesses

Abstract

Progress in DRAM technology requires improved lithography. It is estimated that technology nodes should reach to 16 nm by the year 2019 [1]. Recent improvements in the immersion lithography using an excimer laser (wavelengths of 193 nm and 157 nm) have resulted in the technology nodes as small as 45 nm. Further decreases in the node size are expected using an extreme ultraviolet (EUV) light source with a wavelength of 13. 5 nm. However, the resolution of the linewidth is limited by the diffraction limit of the light. To overcome this limitation, it is necessary to use the optical near-field to exceed the diffraction limit of light. The concept of the optical near-field was proposed [2, 3, 4] as a localized electric field at a metallic aperture (Fig. 1.1). Based on scalar theory [5], when the size of the aperture is much smaller than the wavelength, the scattered light has a larger wavenumber than the incident light. Additionally, to hold the law of momentum conservation, the wavenumber normal to the aperture has a negative value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. For example, see the International Technology Roadmap for Semiconductors (2011) http://public.itrs.net/

  2. E.H. Synge, Phil. Mag. Ser. 7, 356 (1928)

    Google Scholar 

  3. H.A. Bethe, Phys. Rev. 66, 163 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J.A. O’Keefe, J. Opt. Soc. Am. 46, 359 (1956)

    Article  Google Scholar 

  5. M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon, Oxford, 1980)

    Google Scholar 

  6. U.M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, M. Ohtsu, Jpn. J. Appl. Phys. 38, 6713 (1999)

    Article  ADS  Google Scholar 

  7.  K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003)

    Article  ADS  Google Scholar 

  8. S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kämmer, Jpn. J. Appl. Lett. 35, 443 (1996)

    Article  ADS  Google Scholar 

  9. T. Yatsui, M. Kourogi, K. Tsutsui, M. Ohtsu, J. Takahashi, Opt. Lett. 25, 1279 (2000)

    Article  ADS  Google Scholar 

  10. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

    Google Scholar 

  11. U. Dürig, D.W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986)

    Article  ADS  Google Scholar 

  12. T. Pangaribuan, S. Jiang, M.Ohtsu, Electron. Lett. 29, 1978 (1993)

    Article  Google Scholar 

  13. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, Appl. Phys. Lett. 68, 2612 (1996)

    Article  ADS  Google Scholar 

  14. T. Yatsui, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 71, 1756 (1997)

    Article  ADS  Google Scholar 

  15. T. Yatsui, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998)

    Article  ADS  Google Scholar 

  16. T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002)

    Article  ADS  Google Scholar 

  17. T. Yatsui, W. Nomura, M. Ohtsu, J. Nanophoton. 1, 011550 (2007)

    Article  Google Scholar 

  18. Y. Tanaka, K. Kobayashi, J. Micros. 229, 228 (2008)

    Article  MathSciNet  Google Scholar 

  19. A. Sato, Y. Tanaka, F. Minami, K. Kobayashi, J. Lumines 129, 1718 (2009)

    Article  ADS  Google Scholar 

  20. N. Yasumaru, K. Miyazaki, J. Kiuchi, Appl. Phys. A 76, 983 (2003)

    Article  ADS  Google Scholar 

  21. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)

    Article  ADS  Google Scholar 

  22. A.N. Broers, J.M. Harper, W.W. Molzen, Appl. Phys. Lett. 33, 392 (1978)

    Article  ADS  Google Scholar 

  23. T. Ito, S. Okazaki, Nature 406, 1027 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yatsui, T. (2012). Introduction. In: Nanophotonic Fabrication. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24172-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24172-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24171-0

  • Online ISBN: 978-3-642-24172-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics