Advertisement

Introduction

  • Takashi Yatsui
Chapter
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

Progress in DRAM technology requires improved lithography. It is estimated that technology nodes should reach to 16 nm by the year 2019 [1]. Recent improvements in the immersion lithography using an excimer laser (wavelengths of 193 nm and 157 nm) have resulted in the technology nodes as small as 45 nm. Further decreases in the node size are expected using an extreme ultraviolet (EUV) light source with a wavelength of 13. 5 nm. However, the resolution of the linewidth is limited by the diffraction limit of the light. To overcome this limitation, it is necessary to use the optical near-field to exceed the diffraction limit of light. The concept of the optical near-field was proposed [2, 3, 4] as a localized electric field at a metallic aperture (Fig. 1.1). Based on scalar theory [5], when the size of the aperture is much smaller than the wavelength, the scattered light has a larger wavenumber than the incident light. Additionally, to hold the law of momentum conservation, the wavenumber normal to the aperture has a negative value.

Keywords

Scanning Probe Microscopy Diffraction Limit Localize Electric Field Scalar Theory Extreme Ultraviolet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    For example, see the International Technology Roadmap for Semiconductors (2011) http://public.itrs.net/
  2. 2.
    E.H. Synge, Phil. Mag. Ser. 7, 356 (1928)Google Scholar
  3. 3.
    H.A. Bethe, Phys. Rev. 66, 163 (1944)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    J.A. O’Keefe, J. Opt. Soc. Am. 46, 359 (1956)CrossRefGoogle Scholar
  5. 5.
    M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon, Oxford, 1980)Google Scholar
  6. 6.
    U.M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, M. Ohtsu, Jpn. J. Appl. Phys. 38, 6713 (1999)ADSCrossRefGoogle Scholar
  7. 7.
     K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kämmer, Jpn. J. Appl. Lett. 35, 443 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    T. Yatsui, M. Kourogi, K. Tsutsui, M. Ohtsu, J. Takahashi, Opt. Lett. 25, 1279 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)Google Scholar
  11. 11.
    U. Dürig, D.W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    T. Pangaribuan, S. Jiang, M.Ohtsu, Electron. Lett. 29, 1978 (1993)CrossRefGoogle Scholar
  13. 13.
    T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, Appl. Phys. Lett. 68, 2612 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    T. Yatsui, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 71, 1756 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    T. Yatsui, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    T. Yatsui, W. Nomura, M. Ohtsu, J. Nanophoton. 1, 011550 (2007)CrossRefGoogle Scholar
  18. 18.
    Y. Tanaka, K. Kobayashi, J. Micros. 229, 228 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Sato, Y. Tanaka, F. Minami, K. Kobayashi, J. Lumines 129, 1718 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    N. Yasumaru, K. Miyazaki, J. Kiuchi, Appl. Phys. A 76, 983 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    A.N. Broers, J.M. Harper, W.W. Molzen, Appl. Phys. Lett. 33, 392 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    T. Ito, S. Okazaki, Nature 406, 1027 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Takashi Yatsui
    • 1
  1. 1.Department of Electrical Engineering, Information SystemsUniversity of TokyoTokyoJapan

Personalised recommendations