Modelling the Automated Tape Placement of Thermoplastic Composites with In-Situ Consolidation

  • C. M. Stokes-Griffin
  • T. I. Matuszyk
  • Paul Compston
  • M. J. Cardew-Hall

Abstract

In situ consolidation of thermoplastic composites opens the possibility of fully automated composite production when coupled with fibre placement technologies such as automated fibre placement (AFP) and automated tape placement (ATP). These approaches show much potential for flexible and efficient manufacture of lightweight and high performance automotive structures, including high pressure storage vessels for gaseous fuels. The placement rate of such systems must be maximised for production, however maintaining composite quality is nontrivial due to the highly dynamic behaviours at the nip point. Bonding is governed by intimate contact, autohesion and degradation processes. The quality is a function of the level of bonding, crystallinity, void dynamics and residual stress generation. The behaviour of these processes is dictated by the temperature and/or pressure distributions at the interface. In order to analyse the welding process it is therefore necessary to have models for each of the processes combined with robust pressure and temperature analysis. Process optimisation is a trade-off between the different aspects of quality. This paper will investigate the limitations of the work to date and identify improvements for future work.

Keywords

Residual Stress Intimate Contact Void Content Thermoplastic Composite Placement Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pimenta, S., Pinho, S.T.: Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Management 31(2), 378–392 (2011)CrossRefGoogle Scholar
  2. 2.
    Khan, M.A., Mitschang, P., Schledjewski, R.: Identification of some optimal parameters to achieve higher laminate quality through tape placement process. Advances in Polymer Technology 29(2), 98–111 (2010)CrossRefGoogle Scholar
  3. 3.
    Grouve, W.J.B., Warnet, L.L., Akkerman, R.: Towards a Process Simulation Tool for the Laser Assisted Tape Placement Process. In: 14th Eurpean Conference on Composite Materials, Budapest (2010)Google Scholar
  4. 4.
    Lamontia, M.A., Gruber, M.B., Funck, S.B., Waibel, B.J., Cope, R.D., Bruce Hulcher, A.: Developing a contoured deposition head for in situ tape laying and fiber placement. In: Cohen, L.J., Ong, C., Arendt, C. (eds.) International SAMPE Symposium and Exhibition (Proceedings), Long Beach, CA, pp. 2062–2076 (2003)Google Scholar
  5. 5.
    Dara, P.H., Loos, A.C.: Thermoplastic matrix composite processing model (trans: Structures CfCMa). Virginia Polytechnic Institute and State University, Blacksburg (1985)Google Scholar
  6. 6.
    Lee, W.I., Springer, G.S.: A Model of the Manufacturing Process of Thermoplastic Matrix Composites. Journal of Composite Materials 21(11), 1017–1055 (1987)CrossRefGoogle Scholar
  7. 7.
    Mantell, S.C., Springer, G.S.: Manufacturing Process Models for Thermoplastic Composites. Journal of Composite Materials 26(16), 2348–2377 (1992)CrossRefGoogle Scholar
  8. 8.
    Yang, F., Pitchumani, R.: A fractal Cantor set based description of interlaminar contact evolution during thermoplastic composites processing. Journal of Materials Science 36(19), 4661–4671 (2001)CrossRefGoogle Scholar
  9. 9.
    Yang, F., Pitchumani, R.: Interlaminar contact development during thermoplastic fusion bonding. Polymer Engineering & Science 42(2), 424–438 (2002)CrossRefGoogle Scholar
  10. 10.
    De Gennes, P.G.: Reptation of a polymer chain in the presence of fixed obstacles. The Journal of Chemical Physics 55(2), 572–579 (1971)CrossRefGoogle Scholar
  11. 11.
    Wool, R.P., O’Connor, K.M.: A theory of crack healing in polymers. Journal of Applied Physics 52(10), 5953–5963 (1981)CrossRefGoogle Scholar
  12. 12.
    Wool, R.P.: Molecular Aspects of Tack. Rubber Chemistry and Technology 57(2), 307–319 (1984)CrossRefGoogle Scholar
  13. 13.
    Kim, Y.H., Wool, R.P.: A theory of healing at a polymer-polymer interface. Macromolecules 16(7), 1115–1120 (1983)CrossRefGoogle Scholar
  14. 14.
    Bastien, L.J., Gillespie, J.W.: A non-isothermal healing model for strength and toughness of fusion bonded joints of amorphous thermoplastics. Polymer Engineering & Science 31(24), 1720–1730 (1991)CrossRefGoogle Scholar
  15. 15.
    Sonmez, F.O., Hahn, H.T.: Analysis of the On-Line Consolidation Process in Thermoplastic Composite Tape Placement. Journal of Thermoplastic Composite Materials 10(6), 543–572 (1997)Google Scholar
  16. 16.
    Yang, F., Pitchumani, R.: Healing of Thermoplastic Polymers at an Interface under Nonisothermal Conditions. Macromolecules 35(8), 3213–3224 (2002)CrossRefGoogle Scholar
  17. 17.
    Yang, F., Pitchumani, R.: Nonisothermal healing and interlaminar bond strength evolution during thermoplastic matrix composites processing. Polymer Composites 24(2), 263–278 (2003)CrossRefGoogle Scholar
  18. 18.
    Tierney, J.: Modeling of In Situ Strength Development for the Thermoplastic Composite Tow Placement Process. Journal of Composite Materials 40(16), 1487–1506 (2006)CrossRefGoogle Scholar
  19. 19.
    Ranganathan, S., Advani, S.G., Lamontia, M.A.: A Non-Isothermal Process Model for Consolidation and Void Reduction during In-Situ Tow Placement of Thermoplastic Composites. Journal of Composite Materials 29(8), 1040–1062 (1995)CrossRefGoogle Scholar
  20. 20.
    Tierney, J., Gillespie, J.W.: Modeling of Heat Transfer and Void Dynamics for the Thermoplastic Composite Tow-Placement Process. Journal of Composite Materials 37(19), 1745–1768 (2003)CrossRefGoogle Scholar
  21. 21.
    Khan, M.A., Mitschang, P., Schledjewski, R.: Tracing the void content development and identification of its effecting parameters during in situ consolidation of thermoplastic tape material. Polymers and Polymer Composites 18(1), 1–15 (2010)Google Scholar
  22. 22.
    Sonmez, F.O., Hahn, H.T.: Modeling of Heat Transfer and Crystallization in Thermoplastic Composite Tape Placement Process. Journal of Thermoplastic Composite Materials 10(3), 198–240 (1997)Google Scholar
  23. 23.
    Nicodeau, C., Cinquin, J., Regnier, G., Verdu, J.: In-situ consolidation process optimization for thermoplastic matrix composites. In: SAMPE 2006: Creating New Opportunities For The World Economy, Long Beach, CA (2006)Google Scholar
  24. 24.
    Sonmez, F.O., Hahn, H.T., Akbulut, M.: Analysis of Process-Induced Residual Stresses in Tape Placement. Journal of Thermoplastic Composite Materials 15(6), 525–544 (2002)CrossRefGoogle Scholar
  25. 25.
    Aized, T., Shirinzadeh, B.: Robotic fiber placement process analysis and optimization using response surface method. The International Journal of Advanced Manufacturing Technology 55(1), 393–404 (2011)CrossRefGoogle Scholar
  26. 26.
    Hulcher, A.B., Banks Iii, W.I., Pipes, R.B., Tiwari, S.N., Cano, R.J., Johnston, N.J.: Automated fiber placement of PEEK/IM7 composites with film interleaf layers. In: Repecka, L., Saremi, F.F. (eds.) 46th International SAMPE Symposium and Exhibition -2001 a Materials and Processes Odyssey, Long Beach, CA, pp. 1998–2012 (2001)Google Scholar
  27. 27.
    Heider, D., Piovoso, M.J., Gillespie Jr., J.W.: A neural network model-based open-loop optimization for the automated thermoplastic composite tow-placement system. Composites Part A: Applied Science and Manufacturing 34(8), 791–799 (2003)CrossRefGoogle Scholar
  28. 28.
    Sonmez, F., Akbulut, M.: Process optimization of tape placement for thermoplastic composites. Composites Part A: Applied Science and Manufacturing 38(9), 2013–2023 (2007)CrossRefGoogle Scholar
  29. 29.
    Schledjewski, R., Latrille, M.: Processing of unidirectional fiber reinforced tapes–fundamentals on the way to a process simulation tool (ProSimFRT). Composites Science and Technology 63(14), 2111–2118 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • C. M. Stokes-Griffin
    • 1
  • T. I. Matuszyk
    • 1
  • Paul Compston
    • 1
  • M. J. Cardew-Hall
    • 1
  1. 1.Research School of Engineering, College of Engineering and Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations