Biofire – Biogenic Fuel Ignition Research

  • K. Huber
  • J. Hauber
Conference paper

Abstract

The increasing use of biofuels is a major challenge for combustion engine manufacturers in terms of performance and CO2 efficiency. The cetane number, as it is one of the most important fuel numbers for Diesel fuels, is derived from the ignition delay which represents the period between the beginning of fuel injection and the start of combustion. This ignition delay is evaluated by using a single cylinder test engine and measuring the time difference between the signal of the needle stroke sensor which is mounted directly at the injection valve and the maximum pressure increase in cylinder.

This conventional test method for fossil fuels, however, determines ignition behavior of biofuels only insufficiently. The pressure increase of biofuels at start of combustion is less steep due to their lower reaction kinetics and spray quality and therefore results in inaccuracies concerning the determination of cetane numbers.

The method suggested by the bioFIRe project starts with a pressure pattern analysis in order to receive parameters that provide important conversion points in the combustion process. Thus, the ignition delay of fuels - as currently understood - is reflected correctly. This can be achieved by the calculation of statistically, thermodynamic and reaction kinetic parameters for the combustion and the pressure pattern. This allows to determine the cetane number for biogenic as well as for fossil diesel fuels.

The final aim for a successful introduction of the new determination method for cetane numbers is to proof its reproducibility and accurateness. Besides, this method has to be licensed by the Standards Committee.

Keywords

Ignition Delay Cetane Number Round Robin Test Needle Lift Ignition Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DIN 51773: Bestimmung der Zündwilligkeit (Cetanzahl) von Dieselkraftstoffen mit dem BASF-PrüfmotorGoogle Scholar
  2. 2.
    Lauer, W.: Cetanzahlmessung am Prüfdiesel BASF; Betriebsanleitung, Ausgabe C (1966)Google Scholar
  3. 3.
    Terschek, R., Gorek, W., Feuerhelm, T.: Die Bestimmung der Cetanzahl – Standpunktpapier des Arbeitskreises 643 im Fachausschuss für Mineralölnormung (FAM), Erschienen in Erdöl Erdgas Kohle, Heft 10 (2008)Google Scholar
  4. 4.
    Attenberger, A., Remmele, E.: Entwicklung einer Prüfmethode zur Bestimmung der Cetanzahl von Rapsölkraftstoff, Berichte aus dem TFZ 6, Straubing (2003)Google Scholar
  5. 5.
    Picard, K.: Zielkonflikte im Biokraftstoffmarkt – Konsequenzen für den Verbraucher, MTZ 4-2008, pp. S94–S299 (2008)Google Scholar
  6. 6.
    Lumpp, B., Rothe, D., Pastötter, C., Lämmermann, R., Jacob, E.: Oxymethylenether als Dieselkraftstoffzusätze der Zukunft; MTZ 3-2011, pp. S198–S202 (2011) Google Scholar
  7. 7.
    Janssen, A., Jakob, M., Müther, M., Pischinger, S.: Maßgeschneiderte Kraftstoffe aus Biomasse – Potentiale biogener Kraftstoffe zur Emissionsreduktion; MTZ 12-2010, S922–S928 (2010)Google Scholar
  8. 8.
    Janssen, A., Jakob, M., Schnorbus, T., Kolbeck, A.: Chancen und Herausforderung der Ethanolbeimischung zum Dieselkraftstoff; MTZ 7/8-2011, pp. S572–S577 (2011)Google Scholar
  9. 9.
    Wichmann, V.: Konzepte und Betriebsstrategien für die Nutzung von Rapsölen in Verbrennungsmotoren für den Einsatz in Landmaschinen, Dissertation, Universität Rostock (2008)Google Scholar
  10. 10.
    Harndorf, H., Schümann, U., Wichmann, V., Fink, C.: Motorprozessverhalten und Abgasemissionen alternativer Kraftstoffe im Vergleich mit Dieselkraftstoff; MTZ 7/8-2008, pp. S640–S646 (2008)Google Scholar
  11. 11.
    Harndorf, H., Wichmann, V., Schümann, U., Richter, B.: Requirement specification for the use of biofuels in modern high performance engines. FNR Tagung Neue Biokraftstoffe, Berlin, June 24 (2010)Google Scholar
  12. 12.
    von Hohenthal, M.-Y.: Zwischen Acker und Labor; MTZ 12-2010, pp. S852–S859 (2010)Google Scholar
  13. 13.
    The Biofuels Research Advisory Council: Biofuels in the European Union – A vision for 2030 and beyond; Final draft report (2006)Google Scholar
  14. 14.
    Directive 2003/30/EC of the European Parliament and of the Council (May 8, 2003)Google Scholar
  15. 15.
    Directive 2009/28/EC of the European Parliament and of the Council (April 23, 2009)Google Scholar
  16. 16.
    Steinbach, N., Harndorf, H., Weberbauer, F., Thiel, M.: Motorisches Potential von synthetischen Dieselkraftstoffen. MTZ 2-2006, pp. S96–S102 (2006)Google Scholar
  17. 17.
    Heywood, J.B.: Internal Combustion Engine Fundamentals. Mc Graw Hill (1988) ISBN 0-07-100499-8Google Scholar
  18. 18.
    Aatola, H., Larmi, M., Sarjovaara, T., Mikkonen, S.: Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine; SAE 2008-01-2500Google Scholar
  19. 19.
    Huber, K.; Hauber, J.: PCT/EP2009/054845; Method for Determining the Ignitability of a Fuel (April 22, 2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • K. Huber
    • 1
  • J. Hauber
    • 1
  1. 1.Ingolstadt University of Applied SciencesIngolstadtGermany

Personalised recommendations