Various matting methods have been proposed to isolate objects from images by extracting alpha mattes. Although they typically work well for images with smooth regions, their ability to deal with complex or textured patterns is limited due to their inductive inference nature. In this paper we present a Transductive Matting algorithm which explicitly treats the matting task as a statistical transductive inference. Unlike previous approaches, we assume the user marked pixels do not fully capture the statistical distributions of foreground and background colors in the unknown region of the given trimap, thus new foreground and background colors are allowed to be recognized in the transductive labeling process. Quantitative comparisons show that our method achieves better results than previous methods on textured images.


Mean Square Error Background Color Inductive Inference Unknown Region Alpha Matte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, J., Cohen, M.: Image and video matting: A survey. Foundations and Trends in Computer Graphics and Vision 3(2), 97–175 (2007)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Cohen, M.: Optimized color sampling for robust matting. In: Proc. of IEEE CVPR (2007)Google Scholar
  3. 3.
    Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Analysis and Machine Intelligence 30, 228–242 (2008)CrossRefGoogle Scholar
  4. 4.
    Ruzon, M.A., Tomasi, C.: Alpha estimation in natural images. In: Proceedings of IEEE CVPR, pp. 18–25 (2000)Google Scholar
  5. 5.
    Chuang, Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to digital matting. In: Proceedings of IEEE CVPR, pp. 264–271 (2001)Google Scholar
  6. 6.
    Rhemann, C., Rother, C., Gelautz, M.: Improving color modeling for alpha matting. In: Proc. of BMVC (2008)Google Scholar
  7. 7.
    Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson matting. In: Proceedings of ACM SIGGRAPH, pp. 315–321 (2004)Google Scholar
  8. 8.
    Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interactive alpha-matting. In: Proceedings of VIIP 2005, pp. 423–429 (2005)Google Scholar
  9. 9.
    Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: Proc. of IEEE ICCV (2007)Google Scholar
  10. 10.
    Levin, A., Rav-Acha, A., Lischinski, D.: Spectral matting. In: Proc. of IEEE CVPR (2007)Google Scholar
  11. 11.
    Singaraju, D., Vidal, R.: Interactive image matting for multiple layers. In: Proc. of IEEE CVPR (2008)Google Scholar
  12. 12.
    Wang, J., Cohen, M.: An iterative optimization approach for unified image segmentation and matting. In: Proceedings of ICCV 2005, pp. 936–943 (2005)Google Scholar
  13. 13.
    Guan, Y., Chen, W., Liang, X., Ding, Z., Peng, Q.: Easy matting. In: Proc. of Eurographics (2006)Google Scholar
  14. 14.
    Rhemann, C., Rother, C., Rav-Acha, A., Sharp, T.: High resolution matting via interactive trimap segmentation. In: Proc. of IEEE CVPR (2008)Google Scholar
  15. 15.
    Duchenne, O., Audibert, J.-Y.: Segmentation by transduction. In: Proc. of IEEE CVPR (2008)Google Scholar
  16. 16.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proc. of IEEE CVPR (2001)Google Scholar
  17. 17.
    Juan, O., Keriven, R.: Trimap segmentation for fast and user-friendly alpha matting. In: Proc. of IEEE Workshop on VLSM (2005)Google Scholar
  18. 18.
    Smith, A.R., Blinn, J.F.: Blue screen matting. In: Proceedings of ACM SIGGRAPH, pp. 259–268 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jue Wang
    • 1
  1. 1.Adobe SystemsSeattleUSA

Personalised recommendations