Content Based Image Retrieval Using Visual-Words Distribution Entropy

  • Savvas A. Chatzichristofis
  • Chryssanthi Iakovidou
  • Yiannis S. Boutalis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6930)


Bag-of-visual-words (BOVW) is a representation of images which is built using a large set of local features. To date, the experimental results presented in the literature have shown that this approach achieves high retrieval scores in several benchmarking image databases because of their ability to recognize objects and retrieve near-duplicate (to the query) images. In this paper, we propose a novel method that fuses the idea of inserting the spatial relationship of the visual words in an image with the conventional Visual Words method. Incorporating the visual distribution entropy leads to a robust scale invariant descriptor. The experimental results show that the proposed method demonstrates better performance than the classic Visual Words approach, while it also outperforms several other descriptors from the literature.


Image Retrieval Visual Word Query Image Mean Average Precision CBIR System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aly, M., Welinder, P., Munich, M.E., Perona, P.: Automatic discovery of image families: Global vs. local features. In: ICIP, pp. 777–780. IEEE, Los Alamitos (2009)Google Scholar
  2. 2.
    Arampatzis, A., Zagoris, K., Chatzichristofis, S.A.: Dynamic two-stage image retrieval from large multimodal databases. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 326–337. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.J.V.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Chatzichristofis, S.A., Boutalis, Y.S., Lux, M.: SpCD—spatial color distribution descriptor. A fuzzy rule based compact composite descriptor appropriate for hand drawn color sketches retrieval. In: ICAART, pp. 58–63 (2010)Google Scholar
  5. 5.
    Cinque, L., Ciocca, G., Levialdi, S., Pellicanò, A., Schettini, R.: Color-based image retrieval using spatial-chromatic histograms. Image Vision Comput. 19(13), 979–986 (2001)CrossRefGoogle Scholar
  6. 6.
    Cula, O.G., Dana, K.J.: Compact representation of bidirectional texture functions. In: CVPR (1), pp. 1041–1047 (2001)Google Scholar
  7. 7.
    Ding, G., Zhang, L., Li, X.: Video annotation based on adaptive annular spatial partition scheme. IEICE Electronics Express 7(1), 7–12 (2010)CrossRefGoogle Scholar
  8. 8.
    Hsu, W., Chua, S.T., Pung, H.H.: An integrated color-spatial approach to content-based image retrieval. In: Proceedings of the Third ACM International Conference on Multimedia, pp. 305–313. ACM, New York (1995)CrossRefGoogle Scholar
  9. 9.
    Huang, J., Kumar, R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: CVPR, pp. 762–768 (1997)Google Scholar
  10. 10.
    Kogler, M., Lux, M.: Bag of visual words revisited: an exploratory study on robust image retrieval exploiting fuzzy codebooks. In: Proceedings of the Tenth International Workshop on Multimedia Data Mining, MDMKDD 2010, pp. 3:1–3:6. ACM, New York (2010)Google Scholar
  11. 11.
    Li, X., Chen, L., Zhang, L., Lin, F., Ma, W.Y.: Image annotation by large-scale content-based image retrieval. In: ACM Multimedia, pp. 607–610. ACM, New York (2006)Google Scholar
  12. 12.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)Google Scholar
  13. 13.
    Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circuits Syst. Video Techn. 11(6), 703–715 (2001)CrossRefGoogle Scholar
  14. 14.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proc. CVPR, Citeseer, vol. 5 (2006)Google Scholar
  15. 15.
    Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: IEEE Workshop on Applications of Computer Vision, pp. 96–102 (1996)Google Scholar
  16. 16.
    Popescu, A., Moëllic, P.A., Kanellos, I., Landais, R.: Lightweight web image reranking. In: ACM Multimedia, pp. 657–660 (2009)Google Scholar
  17. 17.
    Rao, A., Srihari, R.K., Zhang, Z.: Spatial color histograms for content-based image retrieval. In: ICTAI, pp. 183–186 (1999)Google Scholar
  18. 18.
    Chatzichristofis, S.A., Boutalis, Y.S., Lux, M.: Img(rummager): An interactive content based image retrieval sytem. In: 2nd International Workshop on Similarity Search and Applications (SISAP), pp. 151–153 (2009)Google Scholar
  19. 19.
    Stricker, M., Dimai, A.: Color indexing with weak spatial constraints. In: SPIE Proceedings, vol. 2670, pp. 29–40 (1996)Google Scholar
  20. 20.
    Sun, J., Zhang, X., Cui, J., Zhou, L.: Image retrieval based on color distribution entropy. Pattern Recognition Letters 27(10), 1122–1126 (2006)CrossRefGoogle Scholar
  21. 21.
    Thomee, B., Bakker, E.M., Lew, M.S.: Top-surf: a visual words toolkit. In: ACM Multimedia, pp. 1473–1476 (2010)Google Scholar
  22. 22.
    Zhang, S., Tian, Q., Hua, G., Huang, Q., Li, S.: Descriptive visual words and visual phrases for image applications. In: ACM Multimedia, pp. 75–84 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Savvas A. Chatzichristofis
    • 1
  • Chryssanthi Iakovidou
    • 1
  • Yiannis S. Boutalis
    • 1
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations