Skip to main content

Bundle Adjustment for Stereoscopic 3D

  • Conference paper
Computer Vision/Computer Graphics Collaboration Techniques (MIRAGE 2011)

Abstract

The recent resurgence of stereoscopic 3D films has triggered a high demand for post-processing tools for stereoscopic image sequences. Camera motion estimation, also known as structure-from-motion (SfM) or match-moving, is an essential step in the post-processing pipeline. In order to ensure a high accuracy of the estimated camera parameters, a bundle adjustment algorithm should be employed. We present a new stereo camera model for bundle adjustment. It is designed to be applicable to a wide range of cameras employed in today’s movie productions. In addition, we describe how the model can be integrated efficiently into the sparse bundle adjustment framework, enabling the processing of stereoscopic image sequences with traditional efficiency and improved accuracy. Our camera model is validated by synthetic experiments, on rendered sequences, and on a variety of real-world video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, p. 298. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Hasler, N., Rosenhahn, B., Thormählen, T., Wand, M., Gall, J., Seidel, H.-P.: Markerless motion capture with unsynchronized moving cameras. In: CVPR (2009)

    Google Scholar 

  4. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: Intl. Conference on Computer Vision (2007)

    Google Scholar 

  5. Kim, J.H., Li, H., Hartley, R.: Motion estimation for multi-camera systems using global optimization. In: Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  6. Stewenius, H., Åström, K.: Structure and motion problems for multiple rigidly moving cameras. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 252–263. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Frahm, J.-M., Köser, K., Koch, R.: Pose estimation for multi-camera systems. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 286–293. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Chandraker, M., Lim, J., Kriegman, D.J.: Moving in stereo: Efficient structure and motion using lines. In: International Conference on Computer Vision (2009)

    Google Scholar 

  9. Hirschmüller, H., Innocent, P.R., Garibaldi, J.M.: Fast, unconstrained camera motion estimation from stereo without tracking and robust statistics. In: International Conference on Control, Automation, Robotics and Vision (2002)

    Google Scholar 

  10. Di, K., Xu, F., Li, R.: Constrained bundle adjustment of panoramic stereo images for mars landing site mapping. In: Mobile Mapping Technology (2004)

    Google Scholar 

  11. Zhang, Z., Luong, Q.T., Faugeras, O.: Motion of an uncalibrated stereo rig: Self-calibration and metric reconstruction. TRA 12, 103–113 (1996)

    Google Scholar 

  12. Brooks, M.J., de Agapito, L., Huynh, D.Q., Baumela, L.: Towards robust metric reconstruction via a dynamic uncalibrated stereo head. Image and Vision Computing 16, 989–1002 (1998)

    Article  Google Scholar 

  13. Matthies, L., Shafer, S.A.: Error modeling in stereo navigation. IEEE Journal of Robotics and Automation 3, 239–250 (1987)

    Article  Google Scholar 

  14. Molton, N., Brady, M.: Practical structure and motion from stereo when motion is unconstrained. International Journal of Computer Vision 39, 5–23 (2000)

    Article  MATH  Google Scholar 

  15. Saeedi, P., Lawrence, P.D., Lowe, D.G.: 3d motion tracking of a mobile robot in a natural environment. In: ICRA, pp. 1682–1687 (2000)

    Google Scholar 

  16. Weng, J., Cohen, P., Rebibo, N.: Motion and structure estimation from stereo image sequences. Transactions on Robotics and Automation 8, 362–382 (1992)

    Article  Google Scholar 

  17. Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Rover navigation using stereo ego-motion. Robotics and Autonomous Systems 43, 215–229 (2003)

    Article  Google Scholar 

  18. Sünderhauf, N., Konolige, K., Lacroix, S., Protzel, P.: Visual odometry using sparse bundle adjustment on an autonomous outdoor vehicle. In: AMS (2005)

    Google Scholar 

  19. Sünderhauf, N., Protzel, P.: Towards using sparse bundle adjustment for robust stereo odometry in outdoor terrain. In: TAROS, pp. 206–213 (2006)

    Google Scholar 

  20. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: CVPR (2004)

    Google Scholar 

  21. Dang, T., Hoffmann, C., Stiller, C.: Continuous stereo self-calibration by camera parameter tracking. Transactions on Image Processing 18, 1536–1550 (2009)

    Article  MathSciNet  Google Scholar 

  22. Mandelbaum, R., Salgian, G., Sawhney, H.: Correlation-based estimation of ego-motion and structure from motion and stereo. In: ICCV, vol. 1, pp. 544–550 (1999)

    Google Scholar 

  23. Akhloufi, M., Polotski, V., Cohen, P.: Virtual view synthesis from uncalibrated stereo cameras. In: Multimedia Computing and Systems, pp. 672–677 (1999)

    Google Scholar 

  24. Hartley, R., Gupta, R., Chang, T.: Stereo from uncalibrated cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (1992)

    Google Scholar 

  25. Ko, J.H., Park, C.J., Kim, E.S.: A new rectification scheme for uncalibrated stereo image pairs and its application to intermediate view reconstruction. In: Optical Information Systems II, Proceedings of SPIE, vol. 5557, pp. 98–109 (2004)

    Google Scholar 

  26. Yin, X., Xie, M.: Estimation of the fundamental matrix from uncalibrated stereo hand images for 3d hand gesture recognition. PR 36, 567–584 (2003)

    Google Scholar 

  27. Zhang, Z., Xu, G.: A unified theory of uncalibrated stereo for both perspective and affine cameras. Journal of Mathematical Imaging and Vision 9, 213–229 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hodges, S., Richards, R.: Uncalibrated stereo vision for pcb drilling. In: IEEE Colloquium on Application of Machine Vision (1995)

    Google Scholar 

  29. Park, J.S., Chung, M.J.: Path planning with uncalibrated stereo rig for image-based visual servoing under large pose discrepancy. TRA 19, 250–258 (2003)

    Google Scholar 

  30. Shimizu, Y., Sato, J.: Visual navigation of uncalibrated mobile robots from uncalibrated stereo pointers. In: Intl. Conf. on Pattern Recognition, pp. 346–349 (2000)

    Google Scholar 

  31. Cipolla, R., Hadfield, P.A., Hollinghurst, N.J.: Uncalibrated stereo vision with pointing for a man-machine interface. In: MVA, pp. 163–166 (1994)

    Google Scholar 

  32. Simond, N., Rives, P.: Trajectography of an uncalibrated stereo rig in urban environments. Intelligent Robots and Systems 4, 3381–3386 (2004)

    Google Scholar 

  33. Fusiello, A., Irsara, L.: Quasi-euclidean uncalibrated epipolar rectification. In: IEEE International Conference on Pattern Recognition (2008)

    Google Scholar 

  34. Bleyer, M., Gelautz, M.: Temporally consistent disparity maps from uncalibrated stereo videos. In: Image and Signal Processing and Analysis (2009)

    Google Scholar 

  35. Cheng, C.M., Lai, S.H., Su, S.H.: Self image rectification for uncalibrated stereo video with varying camera motions and zooming effects. In: MVA, pp. 21–24 (2009)

    Google Scholar 

  36. Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. In: International Conference on Computer Vision (2007)

    Google Scholar 

  37. Min, D., Sohn, K.: Edge-preserving simultaneous joint motion-disparity estimation. In: IEEE International Conference on Pattern Recognition, pp. 74–77 (2006)

    Google Scholar 

  38. Zhang, Y., Kambhamettu, C.: On 3-D scene flow and structure recovery from multiview image sequences. Systems, Man, and Cybernetics 33, 592–606 (2003)

    Article  Google Scholar 

  39. Vedula, S., Baker, S., Rander, P., Collins, R.T., Kanade, T.: Three-dimensional scene flow. In: International Conference on Computer Vision, pp. 722–729 (1999)

    Google Scholar 

  40. Trinh, H., McAllester, D.: Structure and motion from road-driving stereo sequences. In: 3D Information Extraction for Video Analysis and Mining (2009)

    Google Scholar 

  41. Pollefeys, M., Gool, L.V., Vergauwen, M., Cornelis, K., Verbiest, F., Tops, J.: Video-to-3D. In: ISPRS Commission V Symposium (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurz, C., Thormählen, T., Seidel, HP. (2011). Bundle Adjustment for Stereoscopic 3D. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics Collaboration Techniques. MIRAGE 2011. Lecture Notes in Computer Science, vol 6930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24136-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24136-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24135-2

  • Online ISBN: 978-3-642-24136-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics