Safety Limits for Human-Size Magnetic Particle Imaging Systems

  • Emine U. Saritas
  • Patrick W. Goodwill
  • George Z. Zhang
  • Wenxiao Yu
  • Steven M. Conolly
Part of the Springer Proceedings in Physics book series (SPPHY, volume 140)

Abstract

Current small-animal-sized MPI scanners operate at 1-25 kHz frequency range with 0.1-20 mT peak amplitude, neither of which is optimized. SAR and especially dB/dt safety limits will determine the optimum excitation field, and will impact the optimum scanning speed, field-of-view (FOV) and signal-to-noise ratio (SNR). In this work, we describe the first human-subject safety limit experiments for MPI. Our results indicate that the magnetostimulation threshold monotonically decreases with increasing frequency and is inversely correlated to the body-part size.

Keywords

Safety Limit Specific Absorption Rate Peripheral Nerve Stimulation Measured Homogeneity Magnetic Field Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005)CrossRefGoogle Scholar
  2. 2.
    Goodwill, P.W., Conolly, S.M.: The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation. IEEE TMI 29, 1851–1859 (2010)Google Scholar
  3. 3.
    Goodwill, P.W., Conolly, S.M.: Multidimensional X-Space Magnetic Particle Imaging. IEEE TMI 30, 1581–1590 (2011)Google Scholar
  4. 4.
    Reilly, J.P.: Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields. Med. Biol. Eng. Comput. 27, 101–110 (1989)CrossRefGoogle Scholar
  5. 5.
    Reilly, J.P.: Maximum pulsed electromagnetic field limits based on peripheral nerve stimulation: application to IEEE/ANSI C95.1 electromagnetic field standards. IEEE Trans. Biomed. Eng. 45, 137–141 (1998)CrossRefGoogle Scholar
  6. 6.
    Bottomley, P.A., Edelstein, W.A.: Power deposition in whole-body NMR imaging. Med. Phys. 8, 510–512 (1981)CrossRefGoogle Scholar
  7. 7.
    Bohnert, J., Gleich, B., Weizenecker, J., Birgert, J., Dossel, O.: Optimizing Coil Currents for reduced SAR in Magnetic Particle Imaging. In: Dössel, O., Schlegel, W.C. (eds.) IFMBE Proceedings, WC 2009. IFMBE, vol. 25/IV, pp. 249–252. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Schaefer, D.J., Bourland, J.D., Nyenhuis, J.A.: Review of patient safety in time-varying gradient fields. JMRI 12, 20–29 (2000)CrossRefGoogle Scholar
  9. 9.
    Zhang, B., Yen, Y.-F., Chronik, B.A., McKinnon, G.C., Schaefer, D.J., Rutt, B.K.: Peripheral nerve stimulation properties of head and body gradient coils of various sizes. MRM 50, 50–58 (2003)Google Scholar
  10. 10.
    Irnich, W., Schmitt, F.: Magnetostimulation in MRI. MRM 33, 619–623 (1995)Google Scholar
  11. 11.
    Schenck, J.F.: Safety of strong, static magnetic fields. JMRI 12, 2–19 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Emine U. Saritas
    • 1
  • Patrick W. Goodwill
    • 1
  • George Z. Zhang
    • 1
  • Wenxiao Yu
    • 1
  • Steven M. Conolly
    • 1
  1. 1.Department of BioengineeringUniversity of California, BerkeleyBerkeleyU.S.A.

Personalised recommendations