Advertisement

Slicing Frequency Mixed Traveling Wave for 3D Magnetic Particle Imaging

  • P. Vogel
  • M. A. Rückert
  • P. Klauer
  • W. H. Kullmann
  • P. M. Jakob
  • V. C. Behr
Part of the Springer Proceedings in Physics book series (SPPHY, volume 140)

Abstract

Magnetic Particle Imaging is based on the nonlinear response of ferro- and superparamagnetic particles to magnetic fields [1]. For imaging, a field free point (FFP) within a string magnetic gradient on the order of 1–5 T/m is moved through the sample. A new gradient system design allows performing dynamic imaging in a linear sampling scheme by using a traveling wave approach [2]. We present an extension for doing 3D imaging using a traveling wave in combination with frequency mixing [3] and a sliced field of view (FoV). This approach provides the possibility of an arbitrarily large FoV in one direction without increasing the specific absorption rate (SAR) and allows the spatial encoding in the additional 2 dimensions.

Keywords

Specific Absorption Rate Coil Pair Saddle Coil Magnetic Particle Image Increase Phase Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005)CrossRefGoogle Scholar
  2. 2.
    Klauer, P., et al.: Magnetic Particle Imaging: Linear Gradient Array for Imaging with a Traveling Wave. In: Proc. ISMRM 2011 Abstract, 3783 (2011)Google Scholar
  3. 3.
    Krause, H.J.: Magnetic particle detection by frequency mixing of immunoassay applications. JMMM 311, 436–444 (2007)Google Scholar
  4. 4.
    Weizenecker, J., et al.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54, L1–L10 (2009)CrossRefGoogle Scholar
  5. 5.
    Goodwill, P.W., et al.: Narrowband magnetic particle imaging. IEEE Trans. Med. Imag. 28(8), 1231–1237 (2009)CrossRefGoogle Scholar
  6. 6.
    Schmale, I., et al.: First phantom and in vivo MPI images with an extended field of view. SPIE Medical Imaging, Pre-Print Version of Paper 7965-7935 (2011)Google Scholar
  7. 7.
    Goodwill, P.W., Concolly, S.M.: The x-space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation. IEEE Trans. Med. Imaging 29, 1851 (2010)CrossRefGoogle Scholar
  8. 8.
    Vogel, P., et al.: Frequency Mixed Traveling Wave for 2D Magnetic Particle Imaging. In: Proc. ICMRM 2011 talk (2011)Google Scholar
  9. 9.
    Goodwill, P.W., Conolly, S.M.: Multi-Dimensional X-Space Magnetic Particle Imaging. IEEE Trans. Med. Imaging 30, 1581 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • P. Vogel
    • 1
    • 2
  • M. A. Rückert
    • 1
    • 2
  • P. Klauer
    • 1
    • 2
  • W. H. Kullmann
    • 2
  • P. M. Jakob
    • 1
    • 3
  • V. C. Behr
    • 1
  1. 1.Department of Experimental Physics 5 (Biophysics)University of WürzburgWürzburgGermany
  2. 2.Electrical EngineeringUniversity of Applied Sciences Würzburg-SchweinfurtSchweinfurtGermany
  3. 3.Research Center Magnetic Resonance Bavaria (MRB) e.V.WürzburgGermany

Personalised recommendations