Tracer Development for Magnetic Particle Imaging

  • Harald Kratz
  • Dietmar Eberbeck
  • Susanne Wagner
  • Jörg Schnorr
  • Matthias Taupitz
Part of the Springer Proceedings in Physics book series (SPPHY, volume 140)


Magnetic particle imaging (MPI) allows quantitative evaluation of the spatial distribution of superparamagnetic iron oxide (SPIO) nanoparticles in the body. With a spatial resolution similar to magnetic resonance imaging (MRI), but superior temporal resolution, MPI has potential for different diagnostic applications. In addition to technical requirements, preclinical and clinical applications of this novel imaging modality require SPIO tracers optimized for MPI. This article discusses the suitability of Resovist as an MPI tracer and challenges and future prospects of tracer development.


Superparamagnetic Iron Oxide Magnetic Resonance Imaging Contrast Agent Superparamagnetic Iron Oxide Nanoparticles Tracer Development Iron Oxide Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005)CrossRefGoogle Scholar
  2. 2.
    Goodwill, P.W., Tamrazian, A., Croft, L.R., Lu, C.D., Johnson, E.M., Pidaparthi, R., et al.: Ferrohydrodynamic relaxometry for magnetic particle imaging. Applied Physics Letters 98, 262502 (2011)CrossRefGoogle Scholar
  3. 3.
    Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Physics in Medicine and Biology 54, L1 (2009)CrossRefGoogle Scholar
  4. 4.
    Gleich, B.: WO2004/091398 A2 (December 28, 2004)Google Scholar
  5. 5.
    Reimer, P., Tombach, B., Daldrup, H., Hesse, T., Sander, G., Balzer, T., et al.: Neue MR-Kontrastmittel in der Leberdiagnostik Erste klinische Ergebnisse mit hepatobiliärem Eovist®(Gadolinium-EOB-DTPA) und RES-spezifischem Resovist®(SH U 555 A). Der Radiologe 36, 124–133 (1996)CrossRefGoogle Scholar
  6. 6.
    Lawaczeck, R., Bauer, H., Frenzel, T., Hasegawa, M., Ito, Y., Kito, K., et al.: Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Pre-clinical profile of SH U555A. Acta Radiol. 38, 584–597 (1997)Google Scholar
  7. 7.
    Eberbeck, D., Wiekhorst, F., Wagner, S., Trahms, L.: How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Applied Physics Letters 98, 182502–182502 (2011)CrossRefGoogle Scholar
  8. 8.
    Ferguson, R.M., Minard, K.R., Krishnan, K.M.: Optimization of nanoparticle core size for magnetic particle imaging. J. Magn. Magn. Mater. 321, 1548–1551 (2009)CrossRefGoogle Scholar
  9. 9.
    Hyeon, T., Lee, S.S., Park, J., Chung, Y., Na, H.B.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001)CrossRefGoogle Scholar
  10. 10.
    Qiu, P., Mao, C.: Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles. Adv. Mater. 23, 4880–4885 (2011)CrossRefGoogle Scholar
  11. 11.
    Bai, L., Ma, X., Liu, J., Sun, X., Zhao, D., Evans, D.G.: Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 132, 2333–2337 (2010)CrossRefGoogle Scholar
  12. 12.
    Novak, J.P., Nickerson, C., Franzen, S., Feldheim, D.L.: Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal. Chem. 73, 5758–5761 (2001)CrossRefGoogle Scholar
  13. 13.
    Hanauer, M., Pierrat, S., Zins, I., Lotz, A., Sönnichsen, C.: Separation of nanoparticles by gel electrophoresis according to size and shape. Nano. Lett. 7, 2881–2885 (2007)CrossRefGoogle Scholar
  14. 14.
    Moore, L.R., Rodriguez, A.R., Williams, P.S., McCloskey, K., Bolwell, B.J., Nakamura, M., et al.: Progenitor cell isolation with a high-capacity quadrupole magnetic flow sorter. Journal of Magnetism and Magnetic Materials 225, 277–284 (2001)CrossRefGoogle Scholar
  15. 15.
    Larsen, B.A., Haag, M.A., Serkova, N.J., Shroyer, K.R., Stoldt, C.R.: Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 19, 265102 (2008)CrossRefGoogle Scholar
  16. 16.
    Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001)Google Scholar
  17. 17.
    Raynal, I., Prigent, P., Peyramaure, S., Najid, A., Rebuzzi, C., Corot, C.: Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol. 39, 56–63 (2004)CrossRefGoogle Scholar
  18. 18.
    Perrault, S.D., Walkey, C., Jennings, T., Fischer, H.C., Chan, W.C.: Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9, 1909–1915 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Harald Kratz
    • 1
  • Dietmar Eberbeck
    • 2
  • Susanne Wagner
    • 1
  • Jörg Schnorr
    • 1
  • Matthias Taupitz
    • 1
  1. 1.Department of RadiologyCharité - Universitätsmedizin BerlinBerlinGermany
  2. 2.Physikalisch-Technische BundesanstaltBerlinGermany

Personalised recommendations