Magnetic Particle Imaging pp 105-109 | Cite as
Superparamagnetic Iron Oxide Nanoparticles: Evaluation of Stability of SPIONs in Different Milieu for Magnetic Particle Imaging
Abstract
Today, a variety of different nanoparticles are used in various applications. In particular, super-paramagnetic iron oxide nanoparticles (or SPIONs) are used in vitro for cell separation and in vivo for hyperthermia or as contrast agent for magnetic resonance imaging (MRI). However, in Magnetic Particle Imaging (MPI), SPIONs play a fundamental role as tracer material. In addition to the overall size of the particles and the particle coating, which are important for medical applications, it is the magnetic core diameter that is relevant for the performance in MPI applications. In general, for in vivo applications, the stability of the particles is of key importance. Therefore, in this paper, the stability of the SPIONs have been analyzed in different particle suspension media.
Keywords
Magnetic Nanoparticles Hydrodynamic Diameter Magnetic Core Superparamagnetic Iron Oxide Suspension MediumPreview
Unable to display preview. Download preview PDF.
References
- 1.Paschen, H., Coenen, C., Fleischer, T., Grünwald, R., Oertel, D., Revermann, C.: Nanotechnologie – Forschung, Entwicklung, Anwendung. Springer, Heidelberg (2004)Google Scholar
- 2.Leyendecker, S.: Nanomaterialien in Architektur. In: Innenarchitektur und Design, Birkhäuser, Basel (2008)Google Scholar
- 3.Bönnemann, H., Brijour, W., Brinkmann, R.: Angew. Chemie 103(10), 1344–1346 (1991)CrossRefGoogle Scholar
- 4.Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005)CrossRefGoogle Scholar
- 5.Mornet, S., Vasseur, S., Grasset, F., Verveka, P., Goglio, G., Demourgues, A., Portier, J., Pollert, E., Duguet, E.: Prog. Solid State Chem. 34, 237 (2006)CrossRefGoogle Scholar
- 6.Elliott, D.W., Zhang, W.X.: Environ. Sci. Technol. 35, 4922 (2001)CrossRefGoogle Scholar
- 7.Gulyaev, A.E., et al.: Significant transport of doxorubicin into brain with polysorbate 80-coated nanoparticles. Pharm. Res. 16(10), 1564–1569 (1999)CrossRefGoogle Scholar
- 8.Lanza, G.M., Lamerichs, R., Caruthers, S., Wickline, A.S.: Molekulare Bildgebung in der MRT mit paramagnetischen Nanopartikeln. Medicamundi 6, 11–17 (2004)Google Scholar
- 9.Groman, E.V., Josephson, L.: US Patent 4.770.183 (1983)Google Scholar
- 10.Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005)CrossRefGoogle Scholar
- 11.Lüdtke-Buzug, K., Biederer, S., Sattel, T., Knopp, T., Buzug, T.M.: Preparation and Characterization of Dextran-Covered Fe3O4 Nanoparticles for Magnetic Particle Imaging. In: Vander Sloten, J., Verdonck, P., Nyssen, M., Haueisen, J. (eds.) IFMBE Proceedings. ECIFMBE 2008, vol. 22, pp. 2343–2346. Springer, Heidelberg (2008)Google Scholar
- 12.Lüdtke-Buzug, K., Biederer, S., Sattel, T.F., Knopp, T., Buzug, T.M.: Particle-Size Distribution of Dextran- and Carboxydextran-Coated Superparamagnetic Nanoparticles for Magnetic Particle Imaging. In: World Congress on Medical Physics and Biomedical Engineering. IFMBE, vol. 25/VIII, pp. 226–229. Springer, Heidelberg (2009)Google Scholar
- 13.Lüdtke-Buzug, K., Rapoport, D., Schneider, D.: Characterization of Iron-Oxide Loaded Adult Stem Cells for Magnetic Particle Imaging in Targeted Cancer Therapy. In: Proc. of AIP Conf., vol. 1311, pp. 244–248 (2010)Google Scholar
- 14.Biederer, S., Knopp, T., Sattel, T.F., Lüdtke-Buzug, K., Gleich, B., Weizenecker, J., Borgert, J., Buzug, T.M.: Magnetization Response Spectroscopy of Superparamagnetic Nanoparticles for Magnetic Particle Imaging. Journal of Physics D: Applied Physics 42(20), 7 (2009)CrossRefGoogle Scholar