A Dynamic Analysis of Interactive Rationality

  • Eric Pacuit
  • Olivier Roy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6953)

Abstract

Epistemic game theory has shown the importance of informational contexts in understanding strategic interaction. We propose a general framework to analyze how such contexts may arise. The idea is to view informational contexts as the fixed-points of iterated, “rational responses” to incoming information about the agents’ possible choices. We show general conditions for the stabilization of such sequences of rational responses, in terms of structural properties of both the decision rule and the information update policy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Apt, K., Zvesper, J.: Public announcements in strategic games with arbitrary strategy sets. In: Proceedings of LOFT 2010 (2010)Google Scholar
  3. 3.
    Apt, K., Zvesper, J.: The role of monotonicity in the epistemic analysis of strategic games. Games 1(4), 381–394 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Asheim, G., Dufwenberg, M.: Admissibility and common belief. Game and Economic Behavior 42, 208–234 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aumann, R., Dreze, J.: Rational expectations in games. American Economic Review 98, 72–86 (2008)CrossRefGoogle Scholar
  6. 6.
    Aumann, R.: Interactive epistemology I: Knowledge. International Journal of Game Theory 28, 263–300 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baltag, A., Smets, S.: ESSLLI 2009 course: Dynamic logics for interactive belief revision (2009), Slides available online at http://alexandru.tiddlyspot.com/#%5B%5BESSLLI09%20COURSE%5D%5D
  8. 8.
    Baltag, A., Smets, S., Zvesper, J.: Keep ‘hoping’ for rationality: a solution to the backwards induction paradox. Synthese 169, 301–333 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Baltag, A., Smets, S.: Group belief dynamics under iterated revision: Fixed points and cycles of joint upgrades. In: Proceedings of Theoretical Aspects of Rationality and Knowledge (2009)Google Scholar
  10. 10.
    van Benthem, J., Gheerbrant, A.: Game solution, epistemic dynamics and fixed-point logics. Fund. Inform. 100, 1–23 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    van Benthem, J., Pacuit, E., Roy, O.: Towards a theory of play: A logical perspective on games and interaction. Games 2(1), 52–86 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2010)Google Scholar
  13. 13.
    Binmore, K.: Modeling rational players: Part I. Economics and Philosophy 3, 179–214 (1987)CrossRefGoogle Scholar
  14. 14.
    Board, O.: Dynamic interactive epistemology. Games and Economic Behavior 49, 49–80 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bonanno, G., Battigalli, P.: Recent results on belief, knowledge and the epistemic foundations of game theory. Research in Economics 53(2), 149–225 (1999)CrossRefGoogle Scholar
  16. 16.
    Boutilier, C.: Conditional Logics for Default Reasoning and Belief Revision. Ph.D. thesis, University of Toronto (1992)Google Scholar
  17. 17.
    Brandenburger, A.: The power of paradox: some recent developments in interactive epistemology. International Journal of Game Theory 35, 465–492 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Brandenburger, A., Friedenberg, A., Keisler, H.J.: Admissibility in games. Econometrica 76, 307–352 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Cubitt, R., Sugden, R.: Common reasoning in games: A Lewisian analysis of common knowledge of rationality, ceDEx Discussion Paper (2011)Google Scholar
  20. 20.
    Cubitt, R., Sugden, R.: The reasoning-based expected utility procedure. Games and Economic Behavior (2011) (in press)Google Scholar
  21. 21.
    Gerbrandy, J.: Bisimulations on Planet Kripke. Ph.D. thesis, University of Amsterdam (1999)Google Scholar
  22. 22.
    Halpern, J., Pass, R.: A logical characterization of iterated admissibility. In: Heifetz, A. (ed.) Proceedings of the Twelfth Conference on Theoretical Aspects of Rationality and Knoweldge, pp. 146–155 (2009)Google Scholar
  23. 23.
    Holliday, W.: Trust and the dynamics of testimony. In: Logic and Interaction Rationality: Seminar’s Yearbook 2009, pp. 147 – 178. ILLC Technical Reports (2009)Google Scholar
  24. 24.
    Kadane, J.B., Larkey, P.D.: Subjective probability and the theory of games. Management Science 28(2), 113–120 (1982)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lamarre, P., Shoham, Y.: Knowledge, certainty, belief and conditionalisation. In: Proceedings of the International Conference on Knoweldge Representation and Reasoning, pp. 415–424 (1994)Google Scholar
  26. 26.
    Lewis, D.: Counterfactuals. Blackwell Publishers, Oxford (1973)MATHGoogle Scholar
  27. 27.
    Plaza, J.: Logics of public communications. Synthese: Knowledge, Rationality, and Action 158(2), 165–179 (2007)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Plaza, J.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S., Hadzikadic, M., Ras, Z. (eds.) Proceedings, 4th International Symposium on Methodologies for Intelligent Systems, pp. 201–216 (1989) (republished as [27])Google Scholar
  29. 29.
    Rabinowicz, W.: Tortous labyrinth: Noncooperative normal-form games between hyperrational players. In: Bicchieri, C., Chiara, M.L.D. (eds.) Knowledge, Belief and Strategic Interaction, pp. 107–125 (1992)Google Scholar
  30. 30.
    Rott, H.: Shifting priorities: Simple representations for 27 itereated theory change operators. In: Lagerlund, H., Lindström, S., Sliwinski, R. (eds.) Modality Matters: Twenty-Five Essays in Honour of Krister Segerberg. Uppsala Philosophical Studies, vol. 53, pp. 359–384 (2006)Google Scholar
  31. 31.
    Roy, O., Pacuit, E.: Substantive assumptions and the existence of universal knowledge structures: A logical perspective (2010) (under submission)Google Scholar
  32. 32.
    Rubinstein, A.: The electronic mail game: A game with almost common knowledge. American Economic Review 79, 385–391 (1989)Google Scholar
  33. 33.
    Samuelson, L.: Dominated strategies and common knowledge. Game and Economic Behavior 4, 284–313 (1992)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Skyrms, B.: The Dynamics of Raitonal Deliberation. Harvard University Press, Cambridge (1990)MATHGoogle Scholar
  35. 35.
    Ullmann-Margalit, E., Morgenbesser, S.: Picking and choosing. Social Research 44, 757–785 (1977)Google Scholar
  36. 36.
    van Benthem, J.: Dynamic logic for belief revision. Journal of Applied Non-Classical Logics 14(2), 129–155 (2004)MathSciNetMATHGoogle Scholar
  37. 37.
    van Benthem, J.: Rational dynamics and epistemic logic in games. International Game Theory Review 9(1), 13–45 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eric Pacuit
    • 1
  • Olivier Roy
    • 2
  1. 1.Tilburg Institute for Logic and Philosophy of ScienceNetherlands
  2. 2.Center for Mathematical Philosophy, LMUGermany

Personalised recommendations