DEL Planning and Some Tractable Cases

  • Benedikt Löwe
  • Eric Pacuit
  • Andreas Witzel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6953)


We describe the planning problem within the framework of dynamic epistemic logic (DEL), considering the tree of sequences of events as the underlying structure. In general, the DEL planning problem is computationally difficult to solve. On the other hand, a great deal of fruitful technical advances have led to deep insights into the way DEL works, and these can be exploited in special cases. We present a few properties that will lead to considerable simplifications of the DEL planning problem and apply them in a toy example.


Model Check Planning Problem Public Announcement Situation Calculus Epistemic Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ågotnes, T., van Ditmarsch, H.: What will they say?—Public announcement games. Paper presented at Logic, Game Theory and Social Choice 6, Tsukuba, Japan (2009)Google Scholar
  2. 2.
    Aucher, G.: Perspectives on Belief and Change. PhD thesis, Université de Toulouse and University of Otago (2008)Google Scholar
  3. 3.
    Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 1998), pp. 43–56. Morgan Kaufmann, San Francisco (1998)Google Scholar
  4. 4.
    Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In: Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Logic and the Foundations of Game and Decision Theory (LOFT 7). Texts in Logic and Games, vol. 3, pp. 9–58. Amsterdam University Press, Amsterdam (2008)Google Scholar
  5. 5.
    Bolander, T., Andersen, M.B.: Epistemic planning for single- and multi-agent systems. Journal of Applied Non-Classical Logics 21(1), 9–34 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Dovier, A., Piazza, C., Policriti, A.: A fast bisimulation algorithm. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 79–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Fikes, R., Nilsson, N.: Strips: a new approach to the application of theorem proving to problem solving. Artificial Intelligence 2, 189–208 (1971)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gerbrandy, J.: Communication strategies in games. Journal of Applied Non-Classical Logics 17(2), 197–211 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  11. 11.
    Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 1–20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14(1), 253–302 (2001)zbMATHGoogle Scholar
  13. 13.
    Kennerly, E., Witzel, A., Zvesper, J.A.: Thief belief. In: Löwe, B. (ed.) LSIR-2: Logic and the Simulation of Interaction and Reasoning Workshop at IJCAI-2009, pp. 47–51 (2009)Google Scholar
  14. 14.
    Lakemeyer, G., Levesque, H.J.: Semantics for a useful fragment of the situation calculus. In: Pack Kaelbling, L., Saffiotti, A. (eds.) IJCAI-2005, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, pp. 490–496. Morgan Kaufmann Publishers Inc., San Francisco (2005)Google Scholar
  15. 15.
    Löwe, B., Pacuit, E.: An abstract approach to reasoning about games with mistaken and changing beliefs. Australasian Journal of Logic 6, 162–181 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Löwe, B., Pacuit, E., Saraf, S.: Identifying the structure of a narrative via an agent-based logic of preferences and beliefs: Formalizations of episodes from CSI: Crime Scene InvestigationTM. In: Duvigneau, M., Moldt, D. (eds.) Proceedings of the Fifth International Workshop on Modelling of Objects, Components and Agents (MOCA 2009), FBI-HH-B-290/09, pp. 45–63 (2009)Google Scholar
  17. 17.
    Palacios, H., Geffner, H.: From conformant into classical planning: Efficient translations that may be complete too. In: Boddy, M., Fox, M., Thiébaux, S. (eds.) Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling (ICAPS 2007) (2007)Google Scholar
  18. 18.
    Petrick, R., Bacchus, F.: A Knowledge-Based approach to planning with incomplete information and sensing. In: Ghallab, M., Hertzberg, J., Traverso, P. (eds.) Proceedings of the Sixth International Conference on Artificial Intelligence Planning and Scheduling (AIPS 2002), pp. 212–221 (2002)Google Scholar
  19. 19.
    Renardel de Lavalette, G.R., van Ditmarsch, H.: Epistemic actions and minimal models, Available on the authors’ websites (2002)Google Scholar
  20. 20.
    Riedl, M.O., Young, R.M.: Character-focused narrative planning (2003) (unpublished manuscript)Google Scholar
  21. 21.
    Riedl, M.O., Young, R.M.: From linear story generation to branching story graphs. IEEE Computer Graphics and Applications 26(3), 23–31 (2006)CrossRefGoogle Scholar
  22. 22.
    Sadzik, T.: Exploring the iterated update universe, ILLC Publications PP-2006-26 (2006)Google Scholar
  23. 23.
    van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. Journal of Applied Non-Classical Logics 17(2), 157–182 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information and Computation 204(11), 1620–1662 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic goals. In: Castelfranchi, C. (ed.) Proceedings of the First International Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS 2002, Bologna, Italy, July 15-19, pp. 1167–1174. ACM, New York (2002)Google Scholar
  26. 26.
    van Ditmarsch, H., Herzig, A., de Lima, T.: From situation calculus to dynamic epistemic logic (2010) (unpublished manuscript)Google Scholar
  27. 27.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  28. 28.
    van Eijck, J., Ruan, J., Sadzik, T.: Action emulation. Draft paper (2008)Google Scholar
  29. 29.
    Witzel, A., Zvesper, J., Kennerly, E.: Explicit knowledge programming for computer games. In: Darken, C., Mateas, M. (eds.) Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference, Stanford, California, USA, October 22-24, AAAI Press, Menlo Park (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Benedikt Löwe
    • 1
    • 2
  • Eric Pacuit
    • 3
  • Andreas Witzel
    • 4
  1. 1.Institute for Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Department MathematikUniversität HamburgHamburgGermany
  3. 3.Tilburg Center for Logic and Philosophy of ScienceTilburg Universiteit van TilburgTilburgThe Netherlands
  4. 4.Bioinformatics Group, Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations