Towards a Model-Driven Infrastructure for Runtime Monitoring

  • Antonia Bertolino
  • Antonello Calabrò
  • Francesca Lonetti
  • Antinisca Di Marco
  • Antonino Sabetta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6968)


In modern pervasive dynamic and eternal systems, software must be able to self-organize its structure and self-adapt its behavior to enhance its resilience and provide the desired quality of service. In this high-dynamic and unpredictable scenario, flexible and reconfigurable monitoring infrastructures become key instruments to verify at runtime functional and non-functional properties. In this paper, we propose a property-driven approach to runtime monitoring that is based on a comprehensive Property Meta-Model (PMM) and on a generic configurable monitoring infrastructure. PMM supports the definition of quantitative and qualitative properties in a machine-processable way making it possible to configure the monitors dynamically. Examples of implementation and applications of the proposed model-driven monitoring infrastructure are excerpted from the ongoing connect European Project.


Eclipse Modeling Framework Complex Event Processing Primitive Event eCore Model Runtime Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ActiveMQ: A complete message broker,
  2. 2.
    Drools Fusion: Complex Event Processor,
  3. 3.
  4. 4.
    Ruleml: The rule markup initiative,
  5. 5.
    ServiceMix: an open source ESB,
  6. 6.
    Barth, W.: Nagios. System and Network Monitoring. No Starch Press, u.s (2006)Google Scholar
  7. 7.
    Bošković, M., Hasselbring, W.: Model Driven Performance Measurement and Assessment with MoDePeMART. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 62–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chakravarthy, S., Mishra, D.: Snoop: An expressive event specification language for active databases. Data & Knowledge Engineering 14(1), 1–26 (1994)CrossRefGoogle Scholar
  9. 9.
    CONNECT Consortium. Deliverable 5.2: Design of Approaches for dependability and initial prototypes (2011),
  10. 10.
    CONNECT Consortium. Deliverable 6.1: Experiment scenarios, prototypes and report (2011),
  11. 11.
    Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In: Proceedings of DEBS, pp. 50–61 (2010)Google Scholar
  12. 12.
    Eclipse Platform, Eclipse Modeling Project,
  13. 13.
    Frolund, S., Koistinen, J.: Quality-of-Service Specification in Distributed Object Systems. Distributed Systems Engineering Journal 5, 179–202 (1998)CrossRefGoogle Scholar
  14. 14.
    Huhn, M., Zechner, A.: Analysing dependability case arguments using quality models. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 118–131. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Hussein, E., Abdel-wahab, H., Maly, K.: HiFi: A New Monitoring Architecture for Distributed Systems Management. In: Proceedings of ICDCS, pp. 171–178 (1999)Google Scholar
  16. 16.
    Mabrouk, N., Georgantas, N., Issarny, V.: A semantic end-to-end QoS model for dynamic service oriented environments. In: Proceedings of PESOS, pp. 34–41 (2009)Google Scholar
  17. 17.
    Masoud, M.S., Sloman, M.: Monitoring distributed systems. In: Network and Distributed Systems Management, pp. 303–347 (1994)Google Scholar
  18. 18.
    Massie, M., Chun, B., Culler, D.: The ganglia distributed monitoring system: design, implementation, and experience. Parallel Computing 30(7), 817–840 (2004)CrossRefGoogle Scholar
  19. 19.
    Monperrus, M., Jézéquel, J., Baudry, B., Champeau, J., Hoeltzener, B.: Model-driven generative development of measurement software. In: Software and Systems Modeling, SoSyM (2010)Google Scholar
  20. 20.
    OASIS: Quality Model for Web Services (WSQM) (September 2005)Google Scholar
  21. 21.
    OMG: UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE),
  22. 22.
    Pataricza, A., Györ, F.: Towards unified dependability modeling and analysis. In: Proceedings of ARCS Workshops, pp. 113–122 (2004)Google Scholar
  23. 23.
    Pietzuch, P.R., Shand, B., Bacon, J.: Composite event detection as a generic middleware extension. IEEE Network 18(1), 44–55 (2004)CrossRefGoogle Scholar
  24. 24.
    Röttger, S., Zschaler, S.: Tool Support for Refinement of Non-functional Specifications. Software and Systems Modeling 6(2), 185–204 (2007)CrossRefGoogle Scholar
  25. 25.
    Samani, M., Sloman, M.: GEM: a generalized event monitoring language for distributed systems. Distributed Systems Engineering 4(2), 96–108 (1997)Google Scholar
  26. 26.
    Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Antonia Bertolino
    • 1
  • Antonello Calabrò
    • 1
  • Francesca Lonetti
    • 1
  • Antinisca Di Marco
    • 2
  • Antonino Sabetta
    • 3
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione “A.Faedo”, CNRPisaItaly
  2. 2.Department of Computer ScienceUniversity of L’AquilaCoppitoItaly
  3. 3.SAP ResearchSophia AntipolisFrance

Personalised recommendations