Characteristics of Diffusion in Selected Systems

  • Michael Leitner
Part of the Springer Theses book series (Springer Theses)


This chapter presents the systems which we have either measured in the course of this thesis or are planning to measure. Each system also serves as a prototype to discuss general aspects of solid-state diffusion.


Interstitial Site Diamond Lattice Apparent Displacement Large Free Volume Thermal Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Berthier, W. Kob, The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture. J. Phys. Condens. Matter 19, 205130 (2007)CrossRefADSGoogle Scholar
  2. 2.
    W.L. Bragg, E.J. Williams, The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. Ser. A 145, 699 (1934)CrossRefADSGoogle Scholar
  3. 3.
    G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, A.B. Schofield, Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys. Rev. Lett. 102, 85703 (2009)CrossRefADSGoogle Scholar
  4. 4.
    L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, S. Mazoyer, TRC: a new tool for studying temporally heterogeneous dynamics. J. Phys. Condens. Matter 15, S257 (2003)CrossRefADSGoogle Scholar
  5. 5.
    L. Cipelletti, L. Ramos, S. Manley, E. Pitard, D. Weitz, E. Pashkovski, M. Johansson, Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss. 123, 237 (2003)CrossRefADSGoogle Scholar
  6. 6.
    J.M. Cowley, X-Ray measurement of order in single crystals of CuAu. J. Appl. Phys. 21, 24 (1950)CrossRefADSGoogle Scholar
  7. 7.
    S. de Gironcoli, P. Giannozzi, S. Baroni, Structure and thermodynamics of \(\hbox{Si}_x\hbox{Ge}_{1-x}\) alloys from ab initio Monte Carlo simulations. Phys. Rev. Lett. 66, 2116 (1991)Google Scholar
  8. 8.
    E. Del Gado, W. Kob, Length-scale-dependent relaxation in colloidal gels. Phys. Rev. Lett. 98, 28303 (2007)CrossRefGoogle Scholar
  9. 9.
    S.V. Divinski, L.N. Larikov, Diffusion by anti-structure defects in non-stoichiometric intermetallic compounds with B2 and structures. J. Phys. Condens. Matter 9, 7873 (1997)CrossRefADSGoogle Scholar
  10. 10.
    E.W. Elcock, C.W. McCombie, Vacancy diffusion in binary ordered alloys. Phys. Rev. 109, 605 (1958)CrossRefADSGoogle Scholar
  11. 11.
    P. Falus, M.A. Borthwick, S. Narayanan, A.R. Sandy, S.G.J. Mochrie, Crossover from stretched to compressed exponential relaxations in a polymer-based sponge phase. Phys. Rev. Lett. 97, 66102 (2006)CrossRefADSGoogle Scholar
  12. 12.
    R. Glauber, Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294 (1963)CrossRefzbMATHADSMathSciNetGoogle Scholar
  13. 13.
    W. Kob, H.C. Andersen, Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the van Hove correlation function. Phys. Rev. E 51, 4626 (1995)CrossRefADSGoogle Scholar
  14. 14.
    W. Kob, H.C. Andersen, Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture II: intermediate scattering function and dynamic susceptibility. Phys. Rev. E 52, 4134 (1995)CrossRefADSGoogle Scholar
  15. 15.
    P.A. Korzhavyi, A.V. Ruban, A.Y. Lozovoi, Y.K. Vekilov, I.A. Abrikosov, B. Johansson, Constitutional and thermal point defects in B2 NiAl. Phys. Rev. B 61, 6003 (2000)CrossRefADSGoogle Scholar
  16. 16.
    A.J. Liu, S.R. Nagel, Jamming is not just cool any more. Nature (London) 396, 21 (1998)CrossRefADSGoogle Scholar
  17. 17.
    K.A. Marino, E.A. Carter, First-principles characterization of Ni diffusion kinetics in \(\beta\)-NiAl. Phys. Rev. B 78, 184105 (2008)Google Scholar
  18. 18.
    T. Massalski (ed.), Binary Alloy Phase Diagrams (American Society for Metals, Materials Park Ohio, 1986)Google Scholar
  19. 19.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)CrossRefADSGoogle Scholar
  20. 20.
    B. Meyer, M. Fähnle, Atomic defects in the ordered compound B2-NiAl: a combination of ab initio electron theory and statistical mechanics. Phys. Rev. B 59, 6072 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Y. Mishin, A.Y. Lozovoi, A. Alavi, Evaluation of diffusion mechanisms in NiAl by embedded-atom and first-principles calculations. Phys. Rev. B 67, 14201 (2003)CrossRefADSGoogle Scholar
  22. 22.
    P. Ramanarayanan, K. Cho, B.M. Clemens, Effect of composition on vacancy mediated diffusion in random binary alloys: first principles study of the \(\hbox{Si}_{1-x}\;\hbox{Ge}_x\) system. J. Appl. Phys. 94, 174 (2003)Google Scholar
  23. 23.
    S. Saw, N.L. Ellegaard, W. Kob, S. Sastry, Structural relaxation of a gel modeled by three body interactions. Phys. Rev. Lett. 103, 248305 (2009)CrossRefADSGoogle Scholar
  24. 24.
    B. Schönfeld, M.J. Portmann, S.Y. Yu, G. Kostorz, The type of order in Cu-10 at.% Au—evidence from the diffuse scattering of X-rays. Acta Mater. 47, 1413 (1999)CrossRefGoogle Scholar
  25. 25.
    W. Shockley, Theory of order for the copper gold alloy system. J. Chem. Phys. 6, 130 (1938)CrossRefADSGoogle Scholar
  26. 26.
    N.A. Stolwijk, M. van Gend, H. Bakker, Self-diffusion in the intermetallic compound CoGa. Philos. Mag. A 42, 783 (1980)CrossRefADSGoogle Scholar
  27. 27.
    G. H. Vineyard, Frequency factors and isotope effects in solid rate processes. J. Phys. Chem. Solids 3, 121(1957)Google Scholar
  28. 28.
    Q. Xu, A. Van der Ven, First-principles investigation of migration barriers and point defect complexes in B2–NiAl. Intermetallics 17, 319 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations