SMV: Selective Multi-Versioning STM

  • Dmitri Perelman
  • Anton Byshevsky
  • Oleg Litmanovich
  • Idit Keidar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)


We present Selective Multi-Versioning (SMV), a new STM that reduces the number of aborts, especially those of long read-only transactions. SMV keeps old object versions as long as they might be useful for some transaction to read. It is able to do so while still allowing reading transactions to be invisible by relying on automatic garbage collection to dispose of obsolete versions.

SMV is most suitable for read-dominated workloads, for which it performs better than previous solutions. It has an up to ×7 throughput improvement over a single-version STM and more than a two-fold improvement over an STM keeping a constant number of versions per object. We show that the memory consumption of algorithms keeping a constant number of versions per object might grow exponentially with the number of objects, while SMV operates successfully even in systems with stringent memory constraints.


Garbage Collection Transactional Memory Multiple Version Object Version Garbage Collector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Attiya, H., Hillel, E.: Brief announcement: Single-Version STMs can be Multi-Version Permissive. In: Proceedings of the 29th Symposium on Principles of Distributed Computing (2010)Google Scholar
  3. 3.
    Aydonat, U., Abdelrahman, T.: Serializability of transactions in software transactional memory. In: Second ACM SIGPLAN Workshop on Transactional Computing (2008)Google Scholar
  4. 4.
    Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 1–10 (1995)Google Scholar
  5. 5.
    Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley, Reading (1987)Google Scholar
  6. 6.
    Bieniusa, A., Fuhrmann, T.: Consistency in hindsight, a fully decentralized stm algorithm. In: IPDPS 2010: Proceedings of the 24th IEEE International Parallel and Distributed Processing Symposium (2010)Google Scholar
  7. 7.
    Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Science of Computer Programming 63(2), 172–185 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional applications for multi-processing. In: IISWC 2008: Proceedings of The IEEE International Symposium on Workload Characterization (September 2008)Google Scholar
  9. 9.
    Carvalho, N., Cachopo, J., Rodrigues, L., Rito-Silva, A.: Versioned transactional shared memory for the FenixEDU web application. In: Proceedings of the 2nd Workshop on Dependable Distributed Data Management, pp. 15–18 (2008)Google Scholar
  10. 10.
    Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 2–13. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Dice, D., Shavit, N.: TLRW: Return of the read-write lock. In: TRANSACT 2009: 4th Workshop on Transactional Computing (February 2009)Google Scholar
  13. 13.
    Ennals, R.: Cache sensitive software transactional memory. Technical reportGoogle Scholar
  14. 14.
    Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software transactional memory. In: PPoPP 2008, pp. 237–246 (2008)Google Scholar
  15. 15.
    Fernandes, S.M., Cachopo, J.A.: Lock-free and Scalable Multi-Version Software Transactional Memory. In: PPoPP 2011, pp. 179–188 (2011)Google Scholar
  16. 16.
    Fraser, K.: Practical lock freedom. PhD thesis. Cambridge University Computer Laboratory (2003)Google Scholar
  17. 17.
    Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edn. Addison-Wesley Longman, Amsterdam (2005)zbMATHGoogle Scholar
  18. 18.
    Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A Benchmark for Software Transactional Memory. In: Proceedings of the Second European Systems Conference (2007)Google Scholar
  19. 19.
    Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for dynamic-sized data structures. In: PODC 2003, pp. 92–101 (2003)Google Scholar
  20. 20.
    Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)CrossRefGoogle Scholar
  21. 21.
    Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San Francisco (2008)Google Scholar
  22. 22.
    Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. In: SPAA 2009, pp. 59–68 (2009)Google Scholar
  23. 23.
    Korland, G., Shavit, N., Felber, P.: Noninvasive Java concurrency with Deuce STM (poster). In: SYSTOR 2009 (2009), Further details at
  24. 24.
    Koskinen, E., Herlihy, M.: Dreadlocks: efficient deadlock detection. In: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, pp. 297–303 (2008)Google Scholar
  25. 25.
    Napper, J., Alvisi, L.: Lock-free serializable transactions. Technical report, The University of Texas at Austin (2005)Google Scholar
  26. 26.
    Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: Selective Multi-Versioning STM. Technical report, Technion (2011)Google Scholar
  27. 27.
    Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in transactional memory. In: PODC (2010)Google Scholar
  28. 28.
    Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing conflicting transactions in an STM. SIGPLAN Not. 44(4), 163–172 (2009)CrossRefGoogle Scholar
  29. 29.
    Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional memory. In: 1st ACM SIGPLAN Workshop on Transactional Computing, TRANSACT (2006)Google Scholar
  31. 31.
    Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software transactional memory. In: PODC 2005, pp. 240–248 (2005)Google Scholar
  32. 32.
    Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 204–213 (1995)Google Scholar
  33. 33.
    Spear, M.F., Michael, M.M., von Praun, C.: RingSTM: scalable transactions with a single atomic instruction. In: SPAA 2008, pp. 275–284 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dmitri Perelman
    • 1
  • Anton Byshevsky
    • 1
  • Oleg Litmanovich
    • 1
  • Idit Keidar
    • 1
  1. 1.Technion, Israel Institute of TechnologyIsrael

Personalised recommendations