Sub-logarithmic Test-and-Set against a Weak Adversary

  • Dan Alistarh
  • James Aspnes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)

Abstract

A randomized implementation is given of a test-and-set register with O(log log n) individual step complexity and O(n) total step complexity against an oblivious adversary. The implementation is linearizable and multi-shot, and shows an exponential complexity improvement over previous solutions designed to work against a strong adversary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Gafni, E., Tromp, J., Vitányi, P.M.B.: Wait-free test-and-set (extended abstract). In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 85–94. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Alistarh, D., Attiya, H., Gilbert, S., Giurgiu, A., Guerraoui, R.: Fast randomized test-and-set and renaming. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 94–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. J. ACM 55(5), 1–26 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Attiya, H., Censor-Hillel, K.: Lower bounds for randomized consensus under a weak adversary. SIAM J. Comput. 39(8), 3885–3904 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M., Vechev, M.T.: Laws of order: expensive synchronization in concurrent algorithms cannot be eliminated. In: POPL, pp. 487–498 (2011)Google Scholar
  6. 6.
    Aumann, Y.: Efficient asynchronous consensus with the weak adversary scheduler. In: PODC 1997: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 209–218. ACM, New York (1997)CrossRefGoogle Scholar
  7. 7.
    Golab, W.M., Hadzilacos, V., Hendler, D., Woelfel, P.: Constant-rmr implementations of cas and other synchronization primitives using read and write operations. In: PODC, pp. 3–12 (2007)Google Scholar
  8. 8.
    Golab, W.M., Hendler, D., Woelfel, P.: An o(1) rmrs leader election algorithm. SIAM J. Comput. 39(7), 2726–2760 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Golab, W.M., Higham, L., Woelfel, P.: Linearizable implementations do not suffice for randomized distributed computation. In: STOC, pp. 373–382 (2011)Google Scholar
  10. 10.
    Herlihy, M.: Randomized wait-free concurrent objects (extended abstract). In: Proceedings of the Tenth Annual ACM symposium on Principles of Distributed Computing, PODC 1991, pp. 11–21. ACM, New York (1991)CrossRefGoogle Scholar
  11. 11.
    Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991)CrossRefGoogle Scholar
  12. 12.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Peterson, G.L., Fischer, M.J.: Economical solutions for the critical section problem in a distributed system (extended abstract). In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, STOC 1977, pp. 91–97. ACM, New York (1977)CrossRefGoogle Scholar
  14. 14.
    Plotkin, S.: Chapter 4: Sticky bits and universality of consensus. Ph.D. Thesis. MIT (1998)Google Scholar
  15. 15.
    Tromp, J., Vitányi, P.: Randomized two-process wait-free test-and-set. Distrib. Comput. 15(3), 127–135 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Alistarh
    • 1
  • James Aspnes
    • 2
  1. 1.EPFLSwitzerland
  2. 2.Yale UniversityUSA

Personalised recommendations