Sub-logarithmic Test-and-Set against a Weak Adversary

  • Dan Alistarh
  • James Aspnes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)


A randomized implementation is given of a test-and-set register with O(log log n) individual step complexity and O(n) total step complexity against an oblivious adversary. The implementation is linearizable and multi-shot, and shows an exponential complexity improvement over previous solutions designed to work against a strong adversary.


Mutual Exclusion Step Complexity Strong Adversary Competition Phase Sift Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Gafni, E., Tromp, J., Vitányi, P.M.B.: Wait-free test-and-set (extended abstract). In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 85–94. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Alistarh, D., Attiya, H., Gilbert, S., Giurgiu, A., Guerraoui, R.: Fast randomized test-and-set and renaming. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 94–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. J. ACM 55(5), 1–26 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Attiya, H., Censor-Hillel, K.: Lower bounds for randomized consensus under a weak adversary. SIAM J. Comput. 39(8), 3885–3904 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M., Vechev, M.T.: Laws of order: expensive synchronization in concurrent algorithms cannot be eliminated. In: POPL, pp. 487–498 (2011)Google Scholar
  6. 6.
    Aumann, Y.: Efficient asynchronous consensus with the weak adversary scheduler. In: PODC 1997: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 209–218. ACM, New York (1997)CrossRefGoogle Scholar
  7. 7.
    Golab, W.M., Hadzilacos, V., Hendler, D., Woelfel, P.: Constant-rmr implementations of cas and other synchronization primitives using read and write operations. In: PODC, pp. 3–12 (2007)Google Scholar
  8. 8.
    Golab, W.M., Hendler, D., Woelfel, P.: An o(1) rmrs leader election algorithm. SIAM J. Comput. 39(7), 2726–2760 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Golab, W.M., Higham, L., Woelfel, P.: Linearizable implementations do not suffice for randomized distributed computation. In: STOC, pp. 373–382 (2011)Google Scholar
  10. 10.
    Herlihy, M.: Randomized wait-free concurrent objects (extended abstract). In: Proceedings of the Tenth Annual ACM symposium on Principles of Distributed Computing, PODC 1991, pp. 11–21. ACM, New York (1991)CrossRefGoogle Scholar
  11. 11.
    Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991)CrossRefGoogle Scholar
  12. 12.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Peterson, G.L., Fischer, M.J.: Economical solutions for the critical section problem in a distributed system (extended abstract). In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, STOC 1977, pp. 91–97. ACM, New York (1977)CrossRefGoogle Scholar
  14. 14.
    Plotkin, S.: Chapter 4: Sticky bits and universality of consensus. Ph.D. Thesis. MIT (1998)Google Scholar
  15. 15.
    Tromp, J., Vitányi, P.: Randomized two-process wait-free test-and-set. Distrib. Comput. 15(3), 127–135 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Alistarh
    • 1
  • James Aspnes
    • 2
  1. 1.EPFLSwitzerland
  2. 2.Yale UniversityUSA

Personalised recommendations