Oblivious Collaboration

  • Yehuda Afek
  • Yakov Babichenko
  • Uriel Feige
  • Eli Gafni
  • Nati Linial
  • Benny Sudakov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)

Abstract

We introduce oblivious protocols, a new framework for distributed computation with limited communication. Within this model we consider the musical chairs task MC(n,m), involving n players (processors) and m chairs. Initially, players occupy arbitrary chairs. Two players are in conflict if they both occupy the same chair. The task terminates when there are no conflicts and each player occupies a different chair. Our oblivious protocols use only limited communication, and do so in an asynchronous fashion. Essentially, a player can only observe whether the player itself is in conflict or not, and nothing else. A player observing no conflict halts and never changes its chair, whereas a player observing a conflict changes its chair according to its deterministic program. Known results imply that even with more general communication primitives, no strategy of the players can guarantee termination if m < 2n − 1. We show that even with this minimal communication termination can be guaranteed with only m = 2n − 1 chairs. Our oblivious protocol can be extended to the well-known Adaptive Renaming problem, using a name-space that is as small as that of the optimal nonoblivious protocol.

We also make substantial progress in optimizing other parameters (such as program length) for our protocols, though many interesting questions remain open.

Keywords

Pseudorandom Generator Limited Communication Random Word Full Word Cyclic Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In: FOCS, pp. 218–223 (1979)Google Scholar
  2. 2.
    Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. J. ACM 37(3), 524–548 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anderson, R.J., Woll, H.: Algorithms for the Certified Write-All Problem. SIAM J. Comput. 26(5), 1277–1283 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared Memory. Journal of the ACM 40(4), 873–890 (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Afek, Y., Babichenko, Y., Feige, U., Gafni, E., Linial, N., Sudakov, B.: Oblivious Collaboration (ArXiv version of current paper.), http://arxiv.org/abs/1106.2065
  6. 6.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a Maximal Independent Set. In: Proc. 25th Int’l Symposium on Distributed Computing (DISC 2011), Rome Italy (September 20-22, 2011)Google Scholar
  7. 7.
    Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: Simultaneous consensus tasks: A tighter characterization of set-consensus. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 331–341. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Beame, P., Blais, E., Ngoc, D.: Longest common subsequences in sets of permutations, http://arxiv4.library.cornell.edu/abs/0904.1615?context=math
  9. 9.
    Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations. In: Proc. 25th ACM Symposium on Theory of Computing (STOC 1993), pp. 91–100 (1993)Google Scholar
  10. 10.
    Castañeda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds for renaming. In: PODC, pp. 295–304 (2008)Google Scholar
  11. 11.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)CrossRefMATHGoogle Scholar
  12. 12.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge, ISBN 0-262-04178-2Google Scholar
  13. 13.
    Dolev, D., Lynch, N.A., Pinter, S., Stark, E.W., Weihl, W.E.: Reaching Approximate Agreement in the Presence of Faults. In: Symposium on Reliability in Distributed Software and Database Systems, pp. 145–154 (1983)Google Scholar
  14. 14.
    Gafni, E.: Read-write reductions. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 349–354. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Gafni, E., Mostéfaoui, A., Raynal, M., Travers, C.: From adaptive renaming to set agreement. Theor. Comput. Sci. 410(14), 1328–1335 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gafni, E., Rajsbaum, S.: Musical benches. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 63–77. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Gafni, E., Rajsbaum, R., Raynal, M., Travers, C.: The committee decision problem. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 502–514. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability. Journal of the ACM 46(6), 858–923 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Metcalfe, R.M., Boggs, D.R.: Ethernet: Distributed packet switching for local computer networks. Commun. Ass. Comput. Mach. 19(7), 395–404 (1976)Google Scholar
  20. 20.
    Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yehuda Afek
    • 1
  • Yakov Babichenko
    • 2
  • Uriel Feige
    • 3
  • Eli Gafni
    • 4
  • Nati Linial
    • 5
  • Benny Sudakov
    • 6
  1. 1.The Blavatnik School of Computer ScienceTel-Aviv UniversityTel-AvivIsrael
  2. 2.Department of MathematicsHebrew UniversityJerusalemIsrael
  3. 3.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael
  4. 4.Computer Science DepartmentUniv. of CaliforniaLos AngelesUSA
  5. 5.School of Computer Science and EngineeringHebrew UniversityJerusalemIsrael
  6. 6.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations