Advertisement

Structured Derivation of Semi-Synchronous Algorithms

  • Hagit Attiya
  • Fatemeh Borran
  • Martin Hutle
  • Zarko Milosevic
  • André Schiper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)

Abstract

The semi-synchronous model is an important middle ground between the synchronous and the asynchronous models of distributed computing. In this model, processes can detect (timeout) when other processes fail. However, since detection is done by timing out, it incurs a cost much higher than the typical delay of messages.

The paper presents a new communication primitive, Timely Announced Broadcast (TAB), and uses it in algorithms for consensus and set consensus in the semi-synchronous model. Separate implementations of TAB, withstanding different types of failures, allow to derive algorithms for consensus and set consensus under crash and omission failures.

The time bounds obtained by our algorithms asymptotically match, or improve, the previously known bounds.

Keywords

semi-synchronous systems timely announced broadcast terminating reliable broadcast set consensus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilera, M.K., Lann, G.L., Toueg, S.: On the impact of fast failure detectors on real-time fault-tolerant systems. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 354–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Attiya, H., Djerassi-Shintel, T.: Time bounds for decision problems in the presence of timing uncertainty and failures. Journal of Parallel and Distributed Computing 61(8), 1096–1109 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Attiya, H., Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Bounds on the time to reach agreement in the presence of timing uncertainty. Journal of the ACM 41(1), 122–152 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Attiya, H., Lynch, N.A.: Time bounds for real-time process control in the presence of timing uncertainty. Information and Computation 110(1), 183–232 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Attiya, H., Welch, J.L.: Distributed computing: Fundamentals, simulations, and advanced topics. Wiley-Interscience, Hoboken (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Berman, P., Bharali, A.A.: Distributed consensus in semi-synchronous systems. In: IPPS, pp. 632–635 (1992)Google Scholar
  7. 7.
    Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally asynchronous systems. Information and Computation 103(1), 132–158 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for k-set agreement. Journal of the ACM 47(5), 912–943 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coan, B.A.: A compiler that increases the fault tolerance of asynchronous protocols. IEEE Transactions on Computers 37(12), 1541–1553 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35(2), 288–323 (1988)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Feldman, P., Micali, S.: Optimal algorithms for Byzantine agreement. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 148–161 (1988)Google Scholar
  13. 13.
    Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony. In: Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, PODC 1998 (1998)Google Scholar
  14. 14.
    Herlihy, M.: Public communcation. minutes 9:28–9:37, http://www.youtube.com/watch?v=s6uEsO2T2lg
  15. 15.
    Herlihy, M., Rajsbaum, S.: Concurrent computing and shellable complexes. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 109–123. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous message-passing models. In: Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing (PODC 1998), pp. 133–142 (1998)Google Scholar
  17. 17.
    Michailidis, D.: Fast set agreement in the presence of timing uncertainty. In: Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing (PODC 1999), pp. 249–256 (1999)Google Scholar
  18. 18.
    Ponzio, S.: Consensus in the presence of timing uncertainty: omission and byzantine failures. In: Proceedings of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC 1991), pp. 125–138 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hagit Attiya
    • 1
  • Fatemeh Borran
    • 2
  • Martin Hutle
    • 3
  • Zarko Milosevic
    • 2
  • André Schiper
    • 2
  1. 1.TechnionIsrael
  2. 2.École Polytechnique Fédérale de Lausanne (EPFL)Switzerland
  3. 3.Fraunhofer SITGermany

Personalised recommendations