Skip to main content

Structured Derivation of Semi-Synchronous Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6950))

Abstract

The semi-synchronous model is an important middle ground between the synchronous and the asynchronous models of distributed computing. In this model, processes can detect (timeout) when other processes fail. However, since detection is done by timing out, it incurs a cost much higher than the typical delay of messages.

The paper presents a new communication primitive, Timely Announced Broadcast (TAB), and uses it in algorithms for consensus and set consensus in the semi-synchronous model. Separate implementations of TAB, withstanding different types of failures, allow to derive algorithms for consensus and set consensus under crash and omission failures.

The time bounds obtained by our algorithms asymptotically match, or improve, the previously known bounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, M.K., Lann, G.L., Toueg, S.: On the impact of fast failure detectors on real-time fault-tolerant systems. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 354–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Attiya, H., Djerassi-Shintel, T.: Time bounds for decision problems in the presence of timing uncertainty and failures. Journal of Parallel and Distributed Computing 61(8), 1096–1109 (2001)

    Article  MATH  Google Scholar 

  3. Attiya, H., Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Bounds on the time to reach agreement in the presence of timing uncertainty. Journal of the ACM 41(1), 122–152 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attiya, H., Lynch, N.A.: Time bounds for real-time process control in the presence of timing uncertainty. Information and Computation 110(1), 183–232 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attiya, H., Welch, J.L.: Distributed computing: Fundamentals, simulations, and advanced topics. Wiley-Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  6. Berman, P., Bharali, A.A.: Distributed consensus in semi-synchronous systems. In: IPPS, pp. 632–635 (1992)

    Google Scholar 

  7. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally asynchronous systems. Information and Computation 103(1), 132–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for k-set agreement. Journal of the ACM 47(5), 912–943 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coan, B.A.: A compiler that increases the fault tolerance of asynchronous protocols. IEEE Transactions on Computers 37(12), 1541–1553 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  12. Feldman, P., Micali, S.: Optimal algorithms for Byzantine agreement. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 148–161 (1988)

    Google Scholar 

  13. Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony. In: Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, PODC 1998 (1998)

    Google Scholar 

  14. Herlihy, M.: Public communcation. minutes 9:28–9:37, http://www.youtube.com/watch?v=s6uEsO2T2lg

  15. Herlihy, M., Rajsbaum, S.: Concurrent computing and shellable complexes. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 109–123. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous message-passing models. In: Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing (PODC 1998), pp. 133–142 (1998)

    Google Scholar 

  17. Michailidis, D.: Fast set agreement in the presence of timing uncertainty. In: Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing (PODC 1999), pp. 249–256 (1999)

    Google Scholar 

  18. Ponzio, S.: Consensus in the presence of timing uncertainty: omission and byzantine failures. In: Proceedings of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC 1991), pp. 125–138 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Attiya, H., Borran, F., Hutle, M., Milosevic, Z., Schiper, A. (2011). Structured Derivation of Semi-Synchronous Algorithms. In: Peleg, D. (eds) Distributed Computing. DISC 2011. Lecture Notes in Computer Science, vol 6950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24100-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24100-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24099-7

  • Online ISBN: 978-3-642-24100-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics