Advertisement

Byzantizing Paxos by Refinement

  • Leslie Lamport
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)

Abstract

We derive a \(3f\!+\!1\) process Byzantine Paxos consensus algorithm by Byzantizing a variant of the ordinary Paxos algorithm—that is, by having \(2f\!+\!1\) nonfaulty processes emulate the ordinary Paxos algorithm despite the presence of f malicious processes. We have written a formal, machine-checked proof that the Byzantized algorithm implements the ordinary Paxos consensus algorithm under a suitable refinement mapping.

Keywords

Liveness Property Consensus Algorithm Consensus Instance Synchrony Assumption Byzantine Consensus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82(2), 253–284 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems 20(4), 398–461 (2002)CrossRefGoogle Scholar
  3. 3.
    Fischer, M.J., Lynch, N., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Guerraoui, R., Vukolić, M.: Refined quorum systems. Distributed Computing 23(1), 1–42 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Lamport, L.: Mechanically checked safety proof of a byzantine paxos algorithm, http://research.microsoft.com/users/lamport/tla/byzpaxos.html. The page can also be found by searching the Web for the 23-letter string obtained by removing the “-” from, uid-lamportbyzpaxosproof
  6. 6.
    Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems 16(2), 133–169 (1998)CrossRefGoogle Scholar
  7. 7.
    Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2003)zbMATHGoogle Scholar
  8. 8.
    Lamport, L.: Fast paxos. Distributed Computing 19(2), 79–103 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lamport, L.: The pluscal algorithm language. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 36–60. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Lamport, L., Malkhi, D., Zhou, L.: Vertical paxos and primary-backup replication. In: Tirthapura, S., Alvisi, L. (eds.) Proceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing, PODC 2009, pp. 312–313. ACM, New York (2009)Google Scholar
  11. 11.
    Lamport, L.B.: Fast byzantine paxos. United States Patent 7620680, filed (August 15, 2002) issued (November 17, 2009)Google Scholar
  12. 12.
    Lamport, L.B., Massa, M.T.: Cheap Paxos. United States Patent 7249280, filed (June 18, 2004) issued (July 24, 2007)Google Scholar
  13. 13.
  14. 14.
    Martin, J.-P., Alvisi, L.: Fast byzantine consensus. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN 2005), Yokohama, pp. 402–411. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  15. 15.
    Oki, B.M.: Viewstamped replication for highly available distributed systems. Technical Report MIT/LCS/TR-423, MIT Laboratory for Computer Science (Ph.D. Thesis) (August 1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Leslie Lamport
    • 1
  1. 1.Microsoft ResearchUSA

Personalised recommendations