Fast and Scalable Rendezvousing

  • Yehuda Afek
  • Michael Hakimi
  • Adam Morrison
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)


In an asymmetric rendezvous system, such as an unfair synchronous queue and an elimination array, threads of two types, consumers and producers, show up and are matched, each with a unique thread of the other type. Here we present a new highly scalable, high throughput asymmetric rendezvous system that outperforms prior synchronous queue and elimination array implementations under both symmetric and asymmetric workloads (more operations of one type than the other). Consequently, we also present a highly scalable elimination-based stack.


Ring Size Thread Count Ring Node Memory Allocator Peak Throughput 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Korland, G., Natanzon, M., Shavit, N.: Scalable producer-consumer pools based on elimination-diffraction trees. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 151–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-Cummings Publishing Co. Inc., Redwood City (1991)zbMATHGoogle Scholar
  3. 3.
    Berger, E.D., McKinley, K.S., Blumofe, R.D., Wilson, P.R.: Hoard: a scalable memory allocator for multithreaded applications. SIGARCH Computer Architecture News 28(5), 117–128 (2000)CrossRefGoogle Scholar
  4. 4.
    Hanson, D.R.: C interfaces and implementations: techniques for creating reusable software. Addison-Wesley Longman Publishing Co., Inc., Boston (1996)Google Scholar
  5. 5.
    Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-parallelism tradeoff. In: Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2010, pp. 355–364. ACM, New York (2010)Google Scholar
  6. 6.
    Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Scalable flat-combining based synchronous queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 79–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2004, pp. 206–215. ACM, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages and Systems (TOPLAS) 13, 124–149 (1991)CrossRefGoogle Scholar
  9. 9.
    Scherer III, W.N., Lea, D., Scott, M.L.: A scalable elimination-based exchange channel. In: Workshop on Synchronization and Concurrency in Object-Oriented Languages, SCOOL 2005 (October 2005)Google Scholar
  10. 10.
    Lea, D., Scherer III, W.N., Scott, M.L.: java.util.concurrent.exchanger source code (2011),
  11. 11.
    Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement scalable and lock-free fifo queues. In: Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2005, pp. 253–262. ACM, New York (2005)Google Scholar
  12. 12.
    Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2006, pp. 147–156. ACM, New York (2006)Google Scholar
  13. 13.
    Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks: preliminary version. In: Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1995, pp. 54–63. ACM, New York (1995)CrossRefGoogle Scholar
  14. 14.
    Shavit, N., Zemach, A.: Diffracting trees. ACM Transactions on Computer Systems (TOCS) 14, 385–428 (1996)CrossRefGoogle Scholar
  15. 15.
    Shavit, N., Zemach, A.: Combining funnels: A dynamic approach to software combining. Journal of Parallel and Distributed Computing 60(11), 1355–1387 (2000)CrossRefzbMATHGoogle Scholar
  16. 16.
    Treiber, R.K.: Systems programming: Coping with parallelism. Tech. Rep. RJ5118, IBM Almaden Research Center (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yehuda Afek
    • 1
  • Michael Hakimi
    • 1
  • Adam Morrison
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityIsrael

Personalised recommendations