DISC 2011: Distributed Computing pp 200-201

# Brief Announcement: Distributed Approximations for the Semi-matching Problem

• Andrzej Czygrinow
• Michal Hanćkowiak
• Krzysztof Krzywdziński
• Edyta Szymańska
• Wojciech Wawrzyniak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)

## Abstract

We consider the semi-matching problem in bipartite graphs. The network is represented by a bipartite graph G = (U ∪ V, E), where U corresponds to clients, V to servers, and E is the set of available connections between them. The goal is to find a set of edges M ⊆ E such that every vertex in U is incident to exactly one edge in M. The load of a server v ∈ V is defined as the square of its degree in M and the problem is to find an optimal semi-matching, i.e. a semi-matching that minimizes the sum of the loads of the servers. Formally, given a bipartite graph G = (U ∪ V,E), a semi-matching in G is a subgraph M such that deg M (u) = 1 for every u ∈ U. A semi-matching M is called optimal if cost(M): = ∑  v ∈ V (deg M (v))2 is minimal. It is not difficult to see that for any semi-matching M, $$\tfrac{|U|^2}{|V|} \leq{\rm cost}(M) \leq \Delta |U|$$ where Δ is such that max v ∈ V d(v) ≤ Δ. Consequently, if M* is optimal and M is arbitrary, then $${\rm cost}(M) \leq \tfrac{\Delta |V| {\rm cost}(M*)}{|U|}.$$ Our main result shows that in some networks the $$\tfrac{\Delta |V|}{|U|}$$ factor can be reduced to a constant (Theorem 1).

## References

1. 1.
Czygrinow, A., Hanćkowiak, M., Krzywdziński, K., Szymańska, E., Wawrzyniak, W.: Distributed approximation algorithm for the semi-matching problem (manuscript)Google Scholar
2. 2.
Fakcharoenphol, J., Laekhanukit, B., Nanongkai, D.: Faster algorithms for semi-matching problems (Extended abstract). In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 176–187. Springer, Heidelberg (2010)
3. 3.
Hanćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of computing maximal matchings. In: Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1998), San Francisco, CA, USA, pp. 219–225 (January 1998)Google Scholar
4. 4.
Harvey, N.J.A., Ladner, R.E., Lovasz, L., Tamir, T.: Semi-matchings for bipartite graphs and load balancing. J. Algoritmss 59(1), 53–78 (2006)

## Authors and Affiliations

• Andrzej Czygrinow
• 1
• Michal Hanćkowiak
• 2
• Krzysztof Krzywdziński
• 2
• Edyta Szymańska
• 2
• Wojciech Wawrzyniak
• 2
1. 1.School of Mathematical and Statistical SciencesArizona State UniversityTempeUSA
2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland