Skip to main content

Maximum Metric Spanning Tree Made Byzantine Tolerant

  • Conference paper
Distributed Computing (DISC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6950))

Included in the following conference series:

Abstract

Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permits to cope with arbitrary malicious behaviors. This paper focuses on systems that are both self-stabilizing and Byzantine tolerant.

We consider the well known problem of constructing a maximum metric tree in this context. Combining these two properties is known to induce many impossibility results. In this paper, we first provide two new impossibility results about the construction of a maximum metric tree in presence of transient and (permanent) Byzantine faults. Then, we propose a new self-stabilizing protocol that provides optimal containment to an arbitrary number of Byzantine faults.

This work has been supported in part by ANR projects SHAMAN and SPADES, by MEXT Global COE Program and by JSPS Grant-in-Aid for Scientific Research ((B) 22300009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  2. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms and Data Structures. In: Algorithms and Theory of Computation Handbook, 2nd edn., pp. 26.1–26.45. CRC Press, Taylor & Francis Group (November 2009)

    Google Scholar 

  4. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  5. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine faults. J. ACM 51(5), 780–799 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daliot, A., Dolev, D.: Self-stabilization of byzantine protocols. In: Herman, T., Tixeuil, S. (eds.) SSS 2005. LNCS, vol. 3764, pp. 48–67. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Symposium on Reliable Distributed Systems (SRDS 2002), p. 22. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  8. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with unbounded byzantine faults. International Journal of Principles and Applications of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

    Google Scholar 

  9. Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 440–453. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. IEEE Transactions on Parallel and Distributed Systems, TPDS (2011)

    Google Scholar 

  11. Dubois, S., Masuzawa, T., Tixeuil, S.: The impact of topology on byzantine containment in stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Dubois, S., Masuzawa, T., Tixeuil, S.: On byzantine containment properties of the min+1 protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Gouda, M.G., Schneider, M.: Maximizable routing metrics. IEEE/ACM Trans. Netw. 11(4), 663–675 (2003)

    Article  Google Scholar 

  14. Gouda, M.G., Schneider, M.: Stabilization of maximal metric trees. In: Arora, A. (ed.) WSS, pp. 10–17. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  15. Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first trees. Inf. Process. Lett. 41(2), 109–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dubois, S., Masuzawa, T., Tixeuil, S.: Maximum Metric Spanning Tree made Byzantine Tolerant. Research report (2011), http://hal.inria.fr/inria-00589234/en/

  17. Dubois, S., Masuzawa, T., Tixeuil, S.: Self-Stabilization, Byzantine Containment, and Maximizable Metrics: Necessary Conditions. Research report (2011), http://hal.inria.fr/inria-00577062/en

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubois, S., Masuzawa, T., Tixeuil, S. (2011). Maximum Metric Spanning Tree Made Byzantine Tolerant. In: Peleg, D. (eds) Distributed Computing. DISC 2011. Lecture Notes in Computer Science, vol 6950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24100-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24100-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24099-7

  • Online ISBN: 978-3-642-24100-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics