Maximum Metric Spanning Tree Made Byzantine Tolerant

  • Swan Dubois
  • Toshimitsu Masuzawa
  • Sébastien Tixeuil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)

Abstract

Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permits to cope with arbitrary malicious behaviors. This paper focuses on systems that are both self-stabilizing and Byzantine tolerant.

We consider the well known problem of constructing a maximum metric tree in this context. Combining these two properties is known to induce many impossibility results. In this paper, we first provide two new impossibility results about the construction of a maximum metric tree in presence of transient and (permanent) Byzantine faults. Then, we propose a new self-stabilizing protocol that provides optimal containment to an arbitrary number of Byzantine faults.

Keywords

Byzantine fault Distributed protocol Fault tolerance Stabilization Spanning tree construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefMATHGoogle Scholar
  2. 2.
    Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)MATHGoogle Scholar
  3. 3.
    Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms and Data Structures. In: Algorithms and Theory of Computation Handbook, 2nd edn., pp. 26.1–26.45. CRC Press, Taylor & Francis Group (November 2009)Google Scholar
  4. 4.
    Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)CrossRefMATHGoogle Scholar
  5. 5.
    Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine faults. J. ACM 51(5), 780–799 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Daliot, A., Dolev, D.: Self-stabilization of byzantine protocols. In: Herman, T., Tixeuil, S. (eds.) SSS 2005. LNCS, vol. 3764, pp. 48–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Symposium on Reliable Distributed Systems (SRDS 2002), p. 22. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  8. 8.
    Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with unbounded byzantine faults. International Journal of Principles and Applications of Information Science and Technology (PAIST) 1(1), 1–13 (2007)Google Scholar
  9. 9.
    Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 440–453. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. IEEE Transactions on Parallel and Distributed Systems, TPDS (2011)Google Scholar
  11. 11.
    Dubois, S., Masuzawa, T., Tixeuil, S.: The impact of topology on byzantine containment in stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Dubois, S., Masuzawa, T., Tixeuil, S.: On byzantine containment properties of the min+1 protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Gouda, M.G., Schneider, M.: Maximizable routing metrics. IEEE/ACM Trans. Netw. 11(4), 663–675 (2003)CrossRefGoogle Scholar
  14. 14.
    Gouda, M.G., Schneider, M.: Stabilization of maximal metric trees. In: Arora, A. (ed.) WSS, pp. 10–17. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  15. 15.
    Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first trees. Inf. Process. Lett. 41(2), 109–117 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dubois, S., Masuzawa, T., Tixeuil, S.: Maximum Metric Spanning Tree made Byzantine Tolerant. Research report (2011), http://hal.inria.fr/inria-00589234/en/
  17. 17.
    Dubois, S., Masuzawa, T., Tixeuil, S.: Self-Stabilization, Byzantine Containment, and Maximizable Metrics: Necessary Conditions. Research report (2011), http://hal.inria.fr/inria-00577062/en

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Swan Dubois
    • 1
  • Toshimitsu Masuzawa
    • 2
  • Sébastien Tixeuil
    • 3
  1. 1.UPMC Sorbonne Universités & INRIAFrance
  2. 2.Osaka UniversityJapan
  3. 3.UPMC Sorbonne Universités & Institut Universitaire de FranceFrance

Personalised recommendations