A Game Theoretic Approach to Community Detection in Social Networks

  • Rodica Ioana Lung
  • Anca Gog
  • Camelia Chira
Part of the Studies in Computational Intelligence book series (SCI, volume 387)


The problem of detecting community structures in social networks is a complex problem of great importance in sociology, biology and computer science. Communities are characterized by dense intra-connections and comparatively sparse inter-cluster connections. The community detection problem is empirically formulated from a game theoretic point of view and solved using a Crowding based Differential Evolution algorithm adapted for detecting Nash equilibria of noncooperative games. Numerical results indicate the potential of this approach.


Nash Equilibrium Differential Evolution Payoff Function Community Detection Differential Evolution Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barabási, A.L.: Linked: The New Science of Networks, 1st edn. Basic Books, New York (2002)Google Scholar
  2. 2.
    Chira, C., Gog, A.: Collaborative community detection in complex networks. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 380–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Fortunato, S.: Community detection in graphs (2010),
  4. 4.
    Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Physical Review E 83(1), 016, 107+ (2011),, doi:10.1103/PhysRevE.83.016107
  5. 5.
    Lai, D., Nardini, C., Lu, H.: Partitioning networks into communities by message passing. Physical Review E 83(1), 016, 115+ (2011),, doi:10.1103/PhysRevE.83.016115.
  6. 6.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11(3), 033, 015+ (2009),, doi:10.1088/1367-2630/11/3/033015
  7. 7.
    Lung, R., Mihoc, T., Dumitrescu, D.: Nash equilibria detection for multi-player games. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–5 (2010), doi:10.1109/CEC.2010.5586174Google Scholar
  8. 8.
    Lung, R.I., Dumitrescu, D.: Computing nash equilibria by means of evolutionary computation. Int. J. of Computers, Communications & Control III(suppl. issue), 364–368 (2008)Google Scholar
  9. 9.
    Lusseau, D., Newman, M.E.J.: Identifying the role that individual animals play in their social network (2004)Google Scholar
  10. 10.
    McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In: Amman, H.M., Kendrick, D.A., Rust, J. (eds.) Handbook of Computational Economics, vol. 1, ch. 2, pp. 87–142. Elsevier, Amsterdam (1996)Google Scholar
  11. 11.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, USA (2009)zbMATHGoogle Scholar
  12. 12.
    Nash, J.F.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2), 026, 113+ (2004),, doi: 10.1103/PhysRevE.69.026113
  14. 14.
    Osborne, M.J.: Introduction to Game Theory: International Edition. No. 9780195322484 in OUP Catalogue. Oxford University Press, Oxford (2009)Google Scholar
  15. 15.
    Pizzuti, C.: Ga-net: A genetic algorithm for community detection in social networks. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Pizzuti, C.: A multi-objective genetic algorithm for community detection in networks. In: IEEE International Conference on Tools with Artificial Intelligence, vol. 0, pp. 379–386 (2009), doi: Scholar
  17. 17.
    Pizzuti, C.: Overlapped community detection in complex networks. In: GECCO, pp. 859–866 (2009)Google Scholar
  18. 18.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. In: Proc. Natl. Acad. Sci. USA (PNAS 2004), vol. 101, pp. 2658–2663 (2004)Google Scholar
  19. 19.
    Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, Berkeley, CA (1995),
  20. 20.
    Storn, R., Price, K.: Differential evolution a simple evolution strategy for fast optimization. Dr. Dobb’s Journal of Software Tools 22(4), 18–24 (1997)MathSciNetGoogle Scholar
  21. 21.
    Tasgin, M., Bingol, H.: Community detection in complex networks using genetic algorithm (2006),
  22. 22.
    Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 1382–1389. IEEE Press, Portland (2004)Google Scholar
  23. 23.
    Šubelj, L., Bajec, M.: Unfolding communities in large complex networks: Combining defensive and offensive label propagation for core extraction. Physical Review E 83(3), 036, 103+ (2011),, doi: 10.1103/PhysRevE.83.036103
  24. 24.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998),, doi:10.1038/30918CrossRefGoogle Scholar
  25. 25.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33(4) (1977),, doi:10.2307/3629752

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rodica Ioana Lung
    • 1
  • Anca Gog
    • 1
  • Camelia Chira
    • 1
  1. 1.Babeş-Bolyai University of Cluj NapocaRomania

Personalised recommendations