Advertisement

Design of Evolvable Biologically Inspired Classifiers

  • Rinde R. S. van Lon
  • Pascal Wiggers
  • Lon J. M. Rothkrantz
  • Tom Holvoet
Part of the Studies in Computational Intelligence book series (SCI, volume 387)

Abstract

Complex systems are emergent, self-organizing and adaptive systems. They are pervasive in nature and usually hard to analyze or understand. Often they appear intelligent and show favorable properties such as resilience and anticipation. In this paper we describe a classifier model inspired by complex systems theory. Our model is a generalization of neural networks, boolean networks and genetic programming trees called computational networks. Designing computational networks by hand is infeasible when dealing with complex data. For designing our classifiers we developed an evolutionary design algorithm. Four extensions of this algorithm are presented. Each extension is inspired by natural evolution and theories from the evolutionary computing literature. The experiments show that our model can be evolutionary designed to act as a classifier. We show that our evolved classifiers are competitive compared to the classifiers in the Weka classifier collection. These experiments lead to the conclusion that using our evolutionary algorithm to design computational networks is a promising approach for the creation of classifiers. The benefits of the evolutionary extensions are inconclusive, for some datasets there is a significant performance increase while for other datasets the increase is very minimal.

Keywords

Cellular Automaton Recurrent Neural Network Boolean Network Complex Adaptive System Collective Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeline, P.J., Pollack, J.B.: Coevolving High-Level Representations. Artificial Life III, 55–71 (1994)Google Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, USA (1999)zbMATHGoogle Scholar
  3. 3.
    Corning, P.A.: The re-emergence of emergence: a venerable concept in search of a theory. Complexity 7(6), 18–30 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Damper, R.: Emergence and levels of abstraction. International Journal of Systems Science 31(7), 811–818 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Darwin, C.R.: On the Origin of Species. John Murray (1859)Google Scholar
  6. 6.
    De Wolf, T., Holvoet, T.: Towards a Methodology for Engineering Self-Organising Emergent Systems. Self-Organization and Autonomic Informatics (I) 135, 18–34 (2005)Google Scholar
  7. 7.
    Di Marzo Serugendo, G.: Engineering Emergent Behaviour: A Vision. In: Hales, D. (ed.) MABS 2003. LNCS, vol. 2927, pp. 1–7. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Dor, R., Rothkrantz, L.J.M.: The Ears Mind An emergent self-organising model of auditory perception. JETAI, 1–23 (2008)Google Scholar
  9. 9.
    Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Tech. Rep., Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (June 1991)Google Scholar
  10. 10.
    Foundalis, H.E.: Phaeaco: A Cognitive Architecture Inspired by Bongard’s Problems. PhD thesis (2006)Google Scholar
  11. 11.
    Groß, R., Nouyan, S., Bonani, M., Mondada, F., Dorigo, M.: Division of Labour in Self-organised Groups. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 426–436. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar
  13. 13.
    Heylighen, F.: The Science Of Self-Organization And Adaptivity. Knowledge Management, Organizational Intelligence and Learning, and Complexity. In: The Encyclopedia of Life Support Systems, EOLSS, pp. 253–280. Publishers Co. Ltd (1999)Google Scholar
  14. 14.
    Holland, J.H.: Complex Adaptive Systems. Daedalus (1, A New Era in Computation) 121,17–30 (1992)Google Scholar
  15. 15.
    Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Perseus Books, New York (1995)Google Scholar
  16. 16.
    Holland, J.H.: Emergence: From Chaos To Order. Perseus Books, New York (1998)zbMATHGoogle Scholar
  17. 17.
    Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16(4), 249–266 (2004)CrossRefGoogle Scholar
  18. 18.
    Hyötyniemi, H.: Turing Machines are Recurrent Neural Networks. In: Alander, J., Honkela, T., Jakobsson, M. (eds.) STeP 1996 - Genes, Nets and Symbols, Finish Artificial Intelligence Society, Vaasa, Finland, pp. 13–24 (1996)Google Scholar
  19. 19.
    Kearns, M.: Thoughts on hypothesis boosting (1988) (unpublished manuscript)Google Scholar
  20. 20.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence (The Morgan Kaufmann Series in Evolutionary Computation). Morgan Kaufmann, San Francisco (2001)Google Scholar
  21. 21.
    Kicinger, R., Arciszewski, T., De Jong, K.A.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures 83(23-24), 1943–1978 (2005)CrossRefGoogle Scholar
  22. 22.
    Koza, J.R.: Genetic programming II. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  23. 23.
    Lindenmayer, A.: Mathematical models for cellular interactions in development, Part I: Filaments with One-sided Inputs. Journal of Theoretical Biology 18, 280–299 (1968)CrossRefGoogle Scholar
  24. 24.
    van Lon, R.R.S.: Evolving Biologically Inspired Classifiers. Msc thesis, Delft University of Technology, Delft (2010) Google Scholar
  25. 25.
    Minsky, M.: The Society of Mind. Simon & Schuster, New York (1988)Google Scholar
  26. 26.
    Mitchell, M., Hofstadter, D.R.: The Copycat Project: A Model of Mental Fluidity and Analogy-making. In: Holyoak, K., Barnden, J. (eds.) Advances in Connectionist and Neural Computation Theory. Ablex, Greenwich (1994)Google Scholar
  27. 27.
    Pasemann, F., Steinmetz, U., Hu, M., Lara, B.: Robot Control and the Evolution of Modular Neurodynamics. Theory in Biosciences 120, 311–326 (2001)Google Scholar
  28. 28.
    Figueira Pujol, J.C., Poli, R.: Efficient evolution of asymmetric recurrent neural networks using a PDGP-inspired two-dimensional representation. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 130–141. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. 29.
    Römmerman, M., Kühn, D., Kirchner, F.: Robot design for space missions using evolutionary computation. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2098–2105 (2009)Google Scholar
  30. 30.
    Salehie, M., Tahvildari, L.: Self-adaptive software: Landcape and Research Challenges. ACM Transactions on Autonomous and Adaptive Systems 4(2), 1–42 (2009)CrossRefGoogle Scholar
  31. 31.
    Schut, M.C.: On model design for simulation of collective intelligence. Information Sciences 180(1), 132–155 (2010)CrossRefGoogle Scholar
  32. 32.
    Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1994, July 1994, pp. 15–22 (1994)Google Scholar
  33. 33.
    Stanley, K.O., Miikkulainen, R.: Competitive Coevolution through Evolutionary Complexification. Journal of Artificial Intelligence Research 21, 63–100 (2004)Google Scholar
  34. 34.
    Terrazas, G., Siepmann, P., Kendall, G., Krasnogor, N.: An Evolutionary Methodology for the Automated Design of Cellular Automaton-based Complex Systems. Journal of Cellular Automata 2, 77–102 (2007)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Torresen, J.: A Divide-and-Conquer Approach to Evolvable Hardware. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 57–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  36. 36.
    Tuci, E., Ampatzis, C.: Evolution of Acoustic Communication Between Two Cooperating Robots. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 395–404. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  37. 37.
    Uny Cao, Y., Fukunaga, A.S., Kahng, A.B.: Cooperative Mobile Robotics: Antecedents and Directions. Autonomous Robots 4, 7–27 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rinde R. S. van Lon
    • 1
  • Pascal Wiggers
    • 2
  • Lon J. M. Rothkrantz
    • 2
  • Tom Holvoet
    • 1
  1. 1.DistriNet Labs, Department of Computer ScienceKatholieke Universiteit LeuvenBelgium
  2. 2.Man-Machine Interaction Group, Department of MediamaticsDelft University of TechnologyNetherlands

Personalised recommendations