Advertisement

Heterogeneous Mathematical Models in Fluid Dynamics and Associated Solution Algorithms

  • Marco Discacciati
  • Paola Gervasio
  • Alfio Quarteroni
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2040)

Abstract

Mathematical models of complex physical problems can be based on heterogeneous differential equations, i.e. on boundary-value problems of different kind in different subregions of the computational domain. In this presentation we will introduce a few representative examples, we will illustrate the way the coupling conditions between the different models can be devised, then we will address several solution algorithms and discuss their properties of convergence as well as their robustness with respect to the variation of the physical parameters that characterize the submodels.

Keywords

Porous Medium Interface Condition Domain Decomposition Diffusion Problem Stokes Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Agoshkov, P. Gervasio, A. Quarteroni, Optimal control in heterogeneous domain decomposition methods for advection-diffusion equations. Mediterr. J. Math. 3(2), 147–176 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    G. Aguilar, F. Lisbona, Interface conditions for a kind of non linear elliptic hyperbolic problems, in Domain Decomposition Methods for Partial Differential Equations, ed. by A. Quarteroni, J. Périeaux, Y.A. Kuznetsov, O.B. Widlund (American Mathematical Society, Providence, 1994), pp. 89–95Google Scholar
  3. 3.
    F. Brezzi, C. Canuto, A. Russo, A self-adaptive formulation for the Euler/Navier–Stokes coupling. Comput. Meth. Appl. Mech. Eng. 73, 317–330 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    L. Badea, M. Discacciati, A. Quarteroni, Numerical analysis of the Navier–Stokes/Darcy coupling. Technical Report, Ecole Polytechnique Fédérale de Lausanne, IACS-CMCS, 2008Google Scholar
  5. 5.
    G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)CrossRefGoogle Scholar
  6. 6.
    X.C. Cai, Some Domain Decompostion Algorithms for Nonselfadjoint Elliptic and Parabolic Partial Differential Equations. Technical Report TR-461, Department of Computer Science, Courant Institute, 1989Google Scholar
  7. 7.
    X.-C. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations. Numer. Math. 60(1), 41–61 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics (Springer, Heidelberg, 2007)Google Scholar
  9. 9.
    A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1992)Google Scholar
  10. 10.
    T.F. Chan, T.P. Mathew, Domain decomposition algorithms, in Acta Numer. (Cambridge University Press, Cambridge, 1994), pp. 61–143Google Scholar
  11. 11.
    C. Carlenzoli, A. Quarteroni, Adaptive domain decomposition methods for advection-diffusion problems, in Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations (Minneapolis, MN, 1993), IMA Volumes in Mathematics and its Applications, vol. 75 (Springer, New York, 1995), pp. 165–186Google Scholar
  12. 12.
    K. Deckelnick, G. Dziuk, C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Q.V. Dinh, R. Glowinski, J. Périaux, Applications of domain decomposition techniques to the numerical solution of the Navier–Stokes equations, in Numerical Methods for Engineering, vol. 1 (Dunod, Paris, 1980), pp. 383–404Google Scholar
  14. 14.
    Q.V. Dinh, R. Glowinski, J. Périaux, G. Terrasson, On the coupling of viscous and inviscid models for incompressible fluid flows via domain decomposition, in First Conf. on Domain Decomposition Methods for Partial Differential Equations, ed. by G.A. Meurant, R. Glowinski, G.H. Golub, J. Périaux (SIAM, Philadelphia, 1988), pp. 350–368Google Scholar
  15. 15.
    M. Discacciati, P. Gervasio, A. Quarteroni, Virtual controls for heterogeneous problems. Technical Report, in progress.Google Scholar
  16. 16.
    M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2004Google Scholar
  17. 17.
    M. Discacciati, Iterative methods for Stokes/Darcy coupling, in Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering (40), ed. by R. Kornhuber et al. (Springer, Berlin and Heidelberg, 2004) pp. 563–570Google Scholar
  18. 18.
    M. Discacciati, E. Miglio, A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    M. Discacciati, A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, in Numerical Mathematics and Advanced Applications, ENUMATH 2001 ed. by F. Brezzi, A. Buffa, S. Corsaro, A. Murli (Springer, Milan, 2003), pp. 3–20Google Scholar
  20. 20.
    M. Discacciati, A. Quarteroni, Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    M. Discacciati, A. Quarteroni, A. Valli, Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (electronic) (2007)Google Scholar
  22. 22.
    E. Dubach, Contribution à la résolution des equations fluides en domaine non borné. Ph.D. thesis, Universitè Paris 13, 1993Google Scholar
  23. 23.
    A. Frati, F. Pasquarelli, A. Quarteroni, Spectral approximation to advection-diffusion problems by the fictitious interface method. J. Comput. Phys. 107(2), 201–211 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    M.J. Gander, L. Halpern, C. Japhet, Optimized Schwarz algorithms for coupling convection and convection-diffusion problems, in Domain Decomposition Methods in Science and Engineering (Lyon, 2000), Theory Eng. Appl. Comput. Methods, Internat. Center Numer. Methods Eng. (CIMNE, Barcelona, 2002), pp. 255–262.Google Scholar
  25. 25.
    M.J. Gander, L. Halpern, C. Japhet, V. Martin, Advection diffusion problems with pure advection approximation in subregions, in Domain Decomposition Methods in Science and Engineering XVI, Lecture Notes in Computer Science and Engineering, vol. 55 (Springer, Berlin, 2007), pp. 239–246Google Scholar
  26. 26.
    M.J. Gander, L. Halpern, C. Japhet, V. Martin, Viscous problems with a vanishing viscosity approximation in subregions: a new approach based on operator factorization, in Proceedings of ESAIM, vol. 27, 2009, pp. 272–288Google Scholar
  27. 27.
    P. Gervasio, J.-L. Lions, A. Quarteroni, Heterogeneous coupling by virtual control methods. Numer. Math. 90(2), 241–264 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    R. Glowinski, J. Périaux, Q.V. Dinh, Domain decomposition methods for non linear problems in fluid dynamics. Technical Report RR-0147, INRIA, 07 1982Google Scholar
  29. 29.
    R. Glowinski, J. Périaux, G. Terrasson, On the coupling of viscous and inviscid models for compressible fluid flows via domain decomposition, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, TX, 1989 (SIAM, Philadelphia, PA, 1990), pp. 64–97Google Scholar
  30. 30.
    F. Gastaldi, A. Quarteroni, On the coupling of hyperbolic and parabolic systems: analytical and numerical approach. Appl. Numer. Math. 6(1), 3–31 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    F. Gastaldi, A. Quarteroni, G. Sacchi Landriani, On the coupling of two dimensional hyperbolic and elliptic equations: analytical and numerical approach, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations ed. by J. Périeaux, T.F.Chan, R.Glowinski, O.B.Widlund, (SIAM, Philadelphia, 1990), pp. 22–63Google Scholar
  32. 32.
    V. Girault, P.A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms (Springer, Berlin, 1986)Google Scholar
  33. 33.
    V. Girault, B. Rivière, DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. Technical Report TR-MATH 07-09, University of Pittsburgh, Department of Mathematics, 2007Google Scholar
  34. 34.
    G. Houzeaux, R. Codina, A Geometrical Domain Decomposition Method in Computational Fluid Dynamics, Monograph CIMNE, vol. 70 (International Center for Numerical Methods in Engineering (CIMNE), Barcelona, 2002)Google Scholar
  35. 35.
    G. Houzeaux, R. Codina, An iteration-by-subdomain overlapping Dirichlet/Robin domain decomposition method for advection-diffusion problems. J. Comput. Appl. Math. 158(2), 243–276 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    A. Iafrati, E.F. Campana, A domain decomposition approach to compute wave breaking (wave-breaking flows). Int. J. Numer. Meth. Fluids 41, 419–445 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 403–465 (1996)MathSciNetzbMATHGoogle Scholar
  38. 38.
    W. Jäger, A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math., 60(4):1111–1127 (2000)zbMATHGoogle Scholar
  39. 39.
    W. Jäger, A. Mikelić, N. Neuss, Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput., 22(6):2006–2028 (2001)zbMATHCrossRefGoogle Scholar
  40. 40.
    J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. (Springer, New York, 1971)Google Scholar
  41. 41.
    P.-L. Lions, On the Schwarz alternating method. I, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Paris, 1987 (SIAM, Philadelphia, PA, 1988), pp. 1–42Google Scholar
  42. 42.
    P.L. Lions, On the Schwarz alternating method III: a variant for non-overlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations ed. by T.F. Chan et al., (SIAM, Philadelphia, 1990), pp. 202–231Google Scholar
  43. 43.
    J.L. Lions, E. Magenes, Problèmes aux Limites Non Homogènes et Applications, vol. 1 (Dunod, Paris, 1968)zbMATHGoogle Scholar
  44. 44.
    J.-L. Lions, O. Pironneau, Algorithmes parallèles pour la solution de problèmes aux limites. C. R. Acad. Sci. Paris Sér. I Math. 327, 947–952 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    J.-L. Lions, O. Pironneau, Sur le contrôle parallèle des systèmes distribués. C. R. Acad. Sci. Paris Sér. I Math. 327, 993–998 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    J.-L. Lions, O. Pironneau, Domain decomposition methods for CAD. C. R. Acad. Sci. Paris Sér. I Math. 328, 73–80 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    W.L. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Num. Anal. 40, 2195–2218 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    T.P. Mathew, Uniform convergence of the Schwarz alternating method for solving singularly perturbed advection-diffusion equations. SIAM J. Numer. Anal. 35(4), 1663–1683 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Y. Maday, A.T. Patera, E.H. Rønquist, An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263–292 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    D. Peaceman, H. Rachford, The numerical solution of parabolic and elliptic differential equations. J. SIAM 3, 28–41 (1955)MathSciNetzbMATHGoogle Scholar
  51. 51.
    L.E. Payne, B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl. 77, 317–354 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    A. Quarteroni, Numerical Models for Differential Problems. Series MS&A. vol. 2 (Springer, Milan, 2009)Google Scholar
  53. 53.
    A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. (The Clarendon Press, Oxford University Press, New York, 1999)Google Scholar
  54. 54.
    B. Rivière, I. Yotov, Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    P.G. Saffman, On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)Google Scholar
  56. 56.
    H.A. Schwarz, Über einige abbildungsaufgaben. Ges. Math. Abh. 65–83 (1890)Google Scholar
  57. 57.
    J.S. Scroggs, A parallel algorithm for nonlinear convection-diffusion equations, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, TX, 1989 (SIAM, Philadelphia, PA, 1990), pp. 373–384Google Scholar
  58. 58.
    K. Schenk and F.K. Hebeker, Coupling of two dimensional viscous and inviscid incompressible Stokes equtions. Technical Report Preprint 93-68 (SFB 359), Heidelberg University, 1993Google Scholar
  59. 59.
    R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983)Google Scholar
  60. 60.
    H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13(2), 631–644 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marco Discacciati
    • 1
  • Paola Gervasio
    • 2
  • Alfio Quarteroni
    • 3
    • 4
  1. 1.Laboratori de Càlcul Numèric (LaCàN)Universitat Politècnica de Catalunya (UPC BarcelonaTech)BarcelonaSpain
  2. 2.Department of MathematicsUniversity of BresciaBresciaItaly
  3. 3.MOX, Department of MathematicsPolitecnico di MilanoMilanoItaly
  4. 4.CMCS-EPFLLausanneSwitzerland

Personalised recommendations