Skip to main content

Bipartite States of Photonic and Flying Electronic Qubits

  • Chapter
  • First Online:
Quantum Entanglement in Electron Optics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 67))

  • 1444 Accesses

Abstract

Chapter 6 and (pages 169–178 in Chap. 7 containing) Sect. 7.3 have been concerned with the non-radiative, spontaneous decay of an inner-shell vacancy created in an atom in its photoionization. Consequently, at both of these places, properties of the Coulombic and of fine-structure entanglement of bipartite spin-states of a pair of (photoelectron e p, Auger electron e a) have, respectively, been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It, in a \(\vert J_{{1}^{{+}^{{\ast}}}}\,M_{J_{{ 1}^{{+}^{{\ast}}}}}\rangle\) representation of the excited photoion \({\mbox{ $\mathfrak{T}$}}^{1{+}^{{\ast}} }\), means (see, for example, [61, 68, 267]) different populations of \(\vert J_{{1}^{{+}^{{\ast}}}}\,M_{J_{{ 1}^{{+}^{{\ast}}}}}\rangle\) and \(\vert J_{{1}^{{+}^{{\ast}}}}\,- M_{J_{{ 1}^{{+}^{{\ast}}}}}\rangle\) fine-structure levels.

  2. 2.

    Here, although levels \(\vert J_{{1}^{{+}^{{\ast}}}}\,M_{J_{{ 1}^{{+}^{{\ast}}}}}\rangle\) and \(\vert J_{{1}^{{+}^{{\ast}}}}\,- M_{J_{{ 1}^{{+}^{{\ast}}}}}\rangle\) have equal populations; the combined populations of these two levels is, however, different from those of \(\vert J_{{1}^{{+}^{{\ast}}}}\,M_{J_{{ 1}^{{+}^{{\ast}}}}}^{\,{\prime}}\rangle\) and \(\vert J_{{1}^{{+}^{{\ast}}}}\,- M_{J_{{ 1}^{{+}^{{\ast}}}}}^{\,{\prime}}\rangle\) (see, for example, [61, 68, 267]).

  3. 3.

    This is well known to be -\(\sum _{i}Z{e}^{2}/r_{i}\) for an atom with atomic number Z and distance r i of the i-th electron from its nucleus.

References

  1. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Benjamin Cummings, New York, 2003)

    Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, 10 Anv. ed. (Cambridge University Press, Cambridge, England, 2011)

    MATH  Google Scholar 

  3. D. Bouwmeester, A.K. Ekert, A. Zeilinger (eds.), The Physics of quantum Information (Springer, Berlin, 2000)

    MATH  Google Scholar 

  4. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978)

    Google Scholar 

  5. K. Blum, Density Matrix Theory and Applications, 3rd edn. (Springer, Berlin, 2012)

    Book  Google Scholar 

  6. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1996)

    MATH  Google Scholar 

  7. R.N. Zare, Angular Momentum (Wiley-Interscience, 1988)

    Google Scholar 

  8. V.L. Jacobs, J. Phys. B 5, 2257 (1972)

    Article  ADS  Google Scholar 

  9. T. Aberg, G. Howat, Handbuch der Physik 31, 469 (1982)

    ADS  Google Scholar 

  10. N. Chandra, R. Ghosh, Quant. Inf. Comput. 9, 36 (2006)

    Google Scholar 

  11. V.V. Balashov, A.N. Grum-Grzhimailo, N.M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions: A Practical Theory Course (Springer, Germany, 2010)

    Google Scholar 

  12. B. Schmidtke, M. Drescher, N.A Cherepkov, U. Heinzman, J. Phys. B 33, 2451 (2000)

    Article  ADS  Google Scholar 

  13. J.M. Raimond, M. Brune, S. Haroche, Revs. Mod. Phys. 73, 565 (2001)

    Article  ADS  Google Scholar 

  14. B.B. Blinov, D.L. Moehring, L.-M. Duan, C. Monroe, Nature 428, 153 (2004)

    Article  ADS  Google Scholar 

  15. D.N. Matsukevich, T. Chaneliére, M. Bhattacharya, S.-Y. Lan, S.D. Jenkins, T.A.B. Kennedy, A. Kuzmich, Phys. Rev. Lett. 95, 040405 (2005)

    Article  ADS  Google Scholar 

  16. D.L. Moehring, M.J. Madsen, B.B. Blinov, C. Monroe, Phys. Rev. Lett. 93, 090410 (2004)

    Article  ADS  Google Scholar 

  17. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter, Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  18. K.W. Chan, C.K. Law, J.H. Eberly, Phys. Rev. Lett. 88, 100402 (2002)

    Article  ADS  Google Scholar 

  19. K.W. Chan, C.K. Law, J.H. Eberly, Phys. Rev. A 68, 022110 (2003)

    Article  ADS  Google Scholar 

  20. R. Guo, H. Guo, Phys. Rev. A 73, 012103 (2006)

    Article  ADS  Google Scholar 

  21. C. Flindt, A.S. Sørensen, M.D. Lukin, J.M. Taylor, Phys. Rev. Lett. 98, 240501 (2007)

    Article  ADS  Google Scholar 

  22. J. Kessler, Polarized Electrons (Springer, New York, 1985)

    Book  Google Scholar 

  23. S. Devons, J.B. Goldfarb, Handbuch der Physik 42, 362 (1957)

    ADS  Google Scholar 

  24. H. Frauenfelder, H. Steffen, in Alpha-, Beta-, and Gamma-Ray Spectroscopy, vol. II., edited by K. Siegbhan (North-Holland, Amsterdam, 1965), p. 997

    Google Scholar 

  25. W.T. Silfvast, IEEE J. Selected Topics in Quantum Electronics 6, 1400 (2000)

    Article  ADS  Google Scholar 

  26. R.B. Cairns, H. Harrison, R.I. Schoen, J. Chem. Phys. 51, 5440 (1969)

    Article  ADS  Google Scholar 

  27. S.P. Shannon, K. Codling, J. Phys. B 11, 1193 (1978)

    Article  ADS  Google Scholar 

  28. S.L. Carter, H.P. Kelly, J. Phys. B 11, 2467 (1978)

    Article  ADS  Google Scholar 

  29. C.E. Theodosiou, A.F. Starace, B.R. Tambe, S.T. Manson, Phys. Rev. A 24, 301 (1981)

    Article  ADS  Google Scholar 

  30. T.E.H. Walker, J.T. Waber, J. Phys. B 7, 674 (1974)

    Article  ADS  Google Scholar 

  31. S. Flügge, W. Mehlhorn, V. Schmidt, Phys. Rev. Lett. 29, 7 (1972)

    Article  ADS  Google Scholar 

  32. E.G. Berezhko, N.M. Kabachnik, V.S. Rostovsky, J. Phys. B 11, 1749 (1978)

    Article  ADS  Google Scholar 

  33. U. Fano, J.H. Macek, Revs. Mod. Phys. 45, 553 (1973)

    Article  ADS  Google Scholar 

  34. C.H. Greene, R.N. Zare, Phys. Rev. A 25, 2031 (1982)

    Article  ADS  Google Scholar 

  35. H. Klar, J. Phys. B 12, L409 (1979)

    Article  ADS  Google Scholar 

  36. H. Klar, J. Phys. B 15, 4535 (1982)

    Article  ADS  Google Scholar 

  37. C.D. Caldwell, R.N. Zare, Phys. Rev. A 16, 255 (1977)

    Article  ADS  Google Scholar 

  38. W. Mauser, W. Mehlhorn, Extended Abstract of the VI International Conference on Vacuum Ultraviolet Radiation Physics, Charlottesville, Virginia, 1980 (unpublished), II-VII

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, N., Ghosh, R. (2013). Bipartite States of Photonic and Flying Electronic Qubits. In: Quantum Entanglement in Electron Optics. Springer Series on Atomic, Optical, and Plasma Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24070-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24070-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24069-0

  • Online ISBN: 978-3-642-24070-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics