Skip to main content

Quantum Information: Basic Relevant Concepts and Applications

  • Chapter
  • First Online:
  • 1491 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 67))

Abstract

The evolution, progress, and survival of human civilization depend equally on creation of knowledge and on the dissemination of the created knowledge to the contemporary and future generations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The remaining discussion in the present Sect. 2.2.3 has been adapted from  [99, 100].

  2. 2.

    It (see, e.g., [90, 96, 97, 101, 102], etc) is related to the spatial separation of the detectors used by the parties A and B in their experiment to test Bell’s inequality (2.21).

  3. 3.

    This loophole (see, [90, 94, 101] and references therein) refers to the problem arising due to low total detection efficiency in an experiment performed to test the inequality (2.21). One, therefore, assumes in such experiments that the detected pairs of particles is a fair representation of the emitted pairs.

  4. 4.

    A criterion applicable to test nonseparability of a mixed states can always be used for pure states as well, but not vice-versa.

  5. 5.

    The following demonstration is based upon that given in [134].

  6. 6.

    An operator, say, Ω is said to be positive if each of its eigenvalues is real and non-negative. It is denoted as Ω  ≥ 0. The expectation value of a positive operator for any state is also positive. If each of the eigenvalues of this operator is strictly greater than zero, then Ω is said to be positive definite. See Appendix A for more details.

  7. 7.

    Although, the form of a partially transposed matrix (\(e.g.,{\rho }^{\mbox{ T}_{1}},or{\rho }^{\mbox{ T}_{2}},\) etc) depends on the choice of the bases, its eigenvalues are, however, always independent of the chosen bases.

  8. 8.

    Sect. 4.2.2 on pages 108–114 in Chap. 4 contains a brief description of bound entanglement.

  9. 9.

    Rank of a matrix is equal to the number of its nonzero eigenvalues [132].

  10. 10.

    For ρ to represent a product state, it should be possible to write it in the form of (2.39) [or, equivalently, (A.4)].

  11. 11.

    A non-separable state ρ cannot be written in the form of (2.39) [or, equivalently, (A.4)].

  12. 12.

    It consists of unitary transformations or (generalized) measurements, say, Ω A and Ω B, performed separately by A and B on their respective qubits of a bipartite state. Such a local transformation/operation is written as Ω A ⊗ Ω B.

  13. 13.

    It is the local operations performed in (ii) which have been correlated by classical communications. That is, the parties A and B communicate to each other the results of their measurements on their respective qubits of a shared bipartite state using presently available telecom technologies based on classical information. For more on LOCC see, for example, [126] and references therein.

  14. 14.

    A maximally entangled mixed state, on the other hand, is the one [142] which, for a given mixedness, achieves the greatest possible entanglement. See, for example, discussion given on pages  128 and  129.

  15. 15.

    The trace norm of a matrix M is defined by (see, e.g., Sect. VI 6 in [158]) \(\parallel M \parallel _{1}\ \equiv \ \mbox{ Tr}\sqrt{M\,{M}^{\dag }}\). Square roots of the eigenvalues of MM  †  are called singular values of the matrix M. Remembering that the trace of a matrix is always equal to the sum of its eigenvalues, the trace norm of a matrix is, therefore, the sum of its singular values. If M is a Hermitian matrix then, obviously, \(\parallel M \parallel _{1}\ =\sum \, \vert \text{eigenvalues of}\ M\vert \).

References

  1. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Benjamin Cummings, New York, 2003)

    Google Scholar 

  2. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    ADS  Google Scholar 

  3. J.S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1965), reprinted in Speakable and non-Speakable in Quantum Mechanics, 2nd ed. (Cambridge University Press, Cambridge, England, 2004), pp. 14; in Foundations of Quantum Mechanics, ed. B. d’Espagnat (Academic Press, New York, 1971), pp. 171

    Google Scholar 

  4. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Google Scholar 

  5. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters Phys. Rev. Lett. 70, 1895 (1993)

    ADS  Google Scholar 

  6. E. Ekert, R. Jozsa, Revs. Mod. Phys. 68, 733 (1996)

    ADS  Google Scholar 

  7. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, 10 Anv. ed. (Cambridge University Press, Cambridge, England, 2011)

    MATH  Google Scholar 

  8. B. Schumacher, Phys. Rev. A 51, 2738 (1995)

    ADS  MathSciNet  Google Scholar 

  9. M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G.M.  D’Ariano, C. Macchiavello, Phys. Rev. Lett. 91, 227901 (2003)

    ADS  Google Scholar 

  10. O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)

    ADS  MathSciNet  Google Scholar 

  11. G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger (eds.), Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, Berlin, 2001)

    MATH  Google Scholar 

  12. M. Murao, D. Jonathan, M.B. Plenio, V. Vederal, Phys. Rev. A 59, 156 (1999)

    ADS  Google Scholar 

  13. R. Cleve, H. Buhrman, Phys. Rev. A 56, 1201 (1997)

    ADS  Google Scholar 

  14. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Vol. I & II (John Wiley, New York, 1978)

    MATH  Google Scholar 

  15. L.I. Schiff, Quantum Mechanics, 3rd rev. ed. (McGraw-Hill, New York, 1968)

    Google Scholar 

  16. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978)

    Google Scholar 

  17. U. Fano, Revs. Mod. Phys. 29, 74 (1957)

    ADS  Google Scholar 

  18. C. Soanes (ed.), The Compact Oxford Reference Dictionary (Oxford University Press, Oxford, 2001)

    Google Scholar 

  19. R. Landauer, IBM J. Res. Dev. 5, 183 (1961)

    Google Scholar 

  20. R. Landauer, Phys. Lett. A 217, 188 (1996)

    ADS  MathSciNet  Google Scholar 

  21. I.A. Khan, J.C. Howell, Phys. Rev. A 73, 031801(R) (2006)

    Google Scholar 

  22. P.G. Kwiat, A.M. Steinberg, R.Y. Chiao, Phys. Rev. A 47, R2472 (1993)

    ADS  Google Scholar 

  23. J.C. Howell, R.S. Bennink, S.J. Bentley, R.W. Boyd, Phys. Rev. Lett. 92, 210403 (2004)

    ADS  Google Scholar 

  24. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature 412, 313 (2001)

    ADS  Google Scholar 

  25. A. Vaziri, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002)

    ADS  Google Scholar 

  26. L.A. Allen, S.M. Barnett, M.J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, UK, 2003)

    Google Scholar 

  27. W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982)

    ADS  Google Scholar 

  28. E. Schrödinger, Die Naturwissenschaften 23, 807, 823, 844 (1935); English translations in Proc. Camb. Phil. Soc. 31, 555 (1935); ibid 32, 446 (1936); Proc. Am. Phil. Soc. 124, 323 (1980)

    Google Scholar 

  29. D. Bohm, Quantum Theory (Prentice-Hall, NJ, 1951)

    MATH  Google Scholar 

  30. M. Genovese, Phys. Rep. 413, 319 (2005)

    ADS  MathSciNet  Google Scholar 

  31. B.M. Terhal, M.W. Wolf, A.C. Doherty, Phys. Today 56, 46 (April 2003)

    Google Scholar 

  32. J.F. Clauser, A. Shimony, Reps. Prog. Phys. 41, 1881 (1978)

    ADS  Google Scholar 

  33. A. Peres, Am. J. Phys. 46, 745 (1978)

    ADS  Google Scholar 

  34. M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Nature 409, 791 (2001)

    ADS  Google Scholar 

  35. A. Aspect, Nature 398, 189 (1999)

    ADS  Google Scholar 

  36. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998)

    ADS  MathSciNet  Google Scholar 

  37. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)

    ADS  Google Scholar 

  38. J. Preskill, Quantum Information and Computation (Lecture Notes for ph219/cs219, California Institute of Technology, California, 2 November 2001), Chapter 4, pp.16

  39. A. Bohm, Quantum Mechanics: Foundations and Applications, 2nd ed. (Springer, New York, 1986)

    MATH  Google Scholar 

  40. M Freyberger, P.K. Arvind, M.A. Horne, A. Shimony, Phys. Rev. A 53, 1232 (1996)

    ADS  Google Scholar 

  41. E.S. Fry, T. Walther, in Quantum [Un]speakables, eds. R.A. Bertlmann, A. Zeilinger, (Springer, New York, 2002) pp. 103

    Google Scholar 

  42. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Revs. Mod. Phys. 80, 517 (2008)

    ADS  Google Scholar 

  43. J. Hald, J.I. Sørensen, C. Schori, E.S. Polzik, Phys. Rev. Lett. 83, 1319 (1999)

    ADS  Google Scholar 

  44. O. Mandel, M. Greiner, A. Widera, T. Rom, T. Hänsch, I. Bloch, Nature 425, 937 (2003)

    ADS  Google Scholar 

  45. S. Ghosh, T.F. Rosenbaum, G. Aeppli, S.N. Coopersmith Nature 425, 48 (2003)

    Google Scholar 

  46. V. Vedral, Nature 425, 28 (2003)

    ADS  Google Scholar 

  47. C.H. Bennett, Phys. Scr. T76, 210 (1998)

    ADS  Google Scholar 

  48. C.H. Bennett, G. Brassard, N.D. Mermin, Phys. Rev. Lett. 68, 557 (1992)

    ADS  MathSciNet  Google Scholar 

  49. G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation and Information, Volume I: Basic Concepts (World Scientific, Singapore, 2005)

    MATH  Google Scholar 

  50. C.H. Bennett, S. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  Google Scholar 

  51. D. Deutsch, Proc. Roy. Soc. A 425, 73 (1989)

    ADS  Google Scholar 

  52. P.W. Shor, in Proc. of the 35th Annual Symposium on the Foundations of Computer Science, ed. S. Goldwasser (IEEE Computer Society Press, Los Alamos, California, 1994) p. 124

    Google Scholar 

  53. R. Jozsa, N. Linden, Proc. Roy. Soc. A 459, 2011 (2003)

    ADS  Google Scholar 

  54. R. Raussendorf, H. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    ADS  Google Scholar 

  55. R. Raussendorf, D.E. Browne, H. Briegel, Phys. Rev. A 68, 022312 (2003)

    ADS  Google Scholar 

  56. J. Eisert, M. Wilkens, M. Lewenstein, Phys. Rev. Lett. 83, 3077 (1999)

    ADS  MathSciNet  Google Scholar 

  57. C. Brukner, M. Z̆ukowski, J.-W. Pan, A. Zeilinger, Phys. Rev. Lett. 92, 127901 (2004)

    ADS  MathSciNet  Google Scholar 

  58. S. Huelga, C. Macchiavello, T. Pellizzari, A. Ekert, M.B. Plenio, J. Cirac, Phys. Rev. Lett. 79, 3865 (1997)

    ADS  Google Scholar 

  59. A.N. Boto, P. Kok, D.S. Abrams, S.L. Braunstein, C.P. Williams, , J.P. Dowling, Phys. Rev. Lett. 85, 2733 (2000)

    ADS  Google Scholar 

  60. R.F. Werner, Phys. Rev. A 40, 4277 (1988)

    ADS  Google Scholar 

  61. M. Seevinck, Jos Uffink, Phys. Rev. A 78, 032101 (2008)

    ADS  MathSciNet  Google Scholar 

  62. L.P. Hughston, R. Jozsa, W.K. Wootters, Phys. Lett. A 183, 14 (1993)

    ADS  MathSciNet  Google Scholar 

  63. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    ADS  MathSciNet  Google Scholar 

  64. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    ADS  MathSciNet  Google Scholar 

  65. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Revs. Mod. Phys. 81, 865 (2009)

    ADS  Google Scholar 

  66. L.M. Ioannou, Quant. Inf. Comput. 7, 335 (2007), quant-ph/0603199v7

    Google Scholar 

  67. N. Gisin, Phys. Lett. A 210, 151 (1996)

    ADS  MathSciNet  Google Scholar 

  68. S. Popescu, Phys. Rev. Lett. 74, 2619 (1995)

    ADS  MathSciNet  Google Scholar 

  69. R. Horodecki, P. Horodecki, M. Horodecki, Phys. Lett. A 200, 340 (1995)

    ADS  MathSciNet  Google Scholar 

  70. M. Horodecki, P. Horodecki, R. Horodecki, in Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, eds. G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger (Springer, Berlin, 2001)

    Google Scholar 

  71. R.F. Werner, M.M. Wolf, quant-ph/0107093V2

    Google Scholar 

  72. A. Ekert, P.L. Knight, Am. J. Phys. 63 (1995) 415

    ADS  Google Scholar 

  73. B.M. Terhal, LANL e-print quant-ph/0101032, 2001

    Google Scholar 

  74. W. Dür, J.I. Cirac, R. Tarrach, Phys. Rev. Lett. 83, 3562 (1999)

    ADS  Google Scholar 

  75. W. Dür, J.I. Cirac, Phys. Rev. A 61, 042314 (2000)

    ADS  MathSciNet  Google Scholar 

  76. P. Horodecki, Phys. Lett. A 232, 333 (1997)

    ADS  MathSciNet  Google Scholar 

  77. B. Kraus, J.I. Cirac, S. Karnas, M. Lewenstein, Phys. Rev. A 61, 062302 (2000)

    ADS  MathSciNet  Google Scholar 

  78. P. Horodecki, M. Lewenstein, G. Vidal, I. Cirac, Phys. Rev. A 62, 03231 (2000)

    Google Scholar 

  79. A. Sanpera, R. Terrach, G. Vidal, Phys. Rev. A 58, 826 (1998)

    ADS  MathSciNet  Google Scholar 

  80. T.-C. Wei, K. Nemoto, P.M. Goldbart, P.G. Kwiat, W.J. Munro, F. Verstraete, Phys. Rev. A 67, 022110 (2003)

    ADS  Google Scholar 

  81. A. Sanpera, R. Terrach, G.Vidal, LANL e-print quant-ph/9707041, 1997

    Google Scholar 

  82. M.M. Wolf, Partial Transposition in Quantum Information Theory, (Ph.D. thesis. Technical University of Braunschweig, Germany, 2003)

    Google Scholar 

  83. E. H. Lloyd, The Mathematical Gazette, 37, 29 (1953)

    Google Scholar 

  84. M. Horodecki, P. Horodecki, Phys. Rev. A 59, 4206 (1999)

    ADS  Google Scholar 

  85. J. Eisert, M.B. Plenio, J. Mod. Opt. 46, 145 (1999)

    ADS  Google Scholar 

  86. M. Horodecki, Quant. Inf. Comput. 1, 3 (2001)

    Google Scholar 

  87. W.K. Wootters, Quant. Inf. Comput. 1, 27 (2001)

    Google Scholar 

  88. M.B. Plenio, S. Virmani, Quant. Inf. Comput. 7, 1 (2007)

    Google Scholar 

  89. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 84, 2014 (2000)

    ADS  Google Scholar 

  90. V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)

    ADS  MathSciNet  Google Scholar 

  91. V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998)

    ADS  Google Scholar 

  92. J. von Neumann, Mathematical Foundations of Quantum Mechanics, (Princeton University Press, Princeton, 1996)

    MATH  Google Scholar 

  93. M.A. Nielson, Phys. Rev. Lett. 83, 436 (1999)

    ADS  Google Scholar 

  94. K. Zyczkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Phys. Rev. A 58, 883 (1998)

    ADS  MathSciNet  Google Scholar 

  95. M. Reed, B. Simon, Methods in Modern Mathematical Physics: Functional Analysis, Volume 1 (Academic New York, 1981).

    Google Scholar 

  96. G. Vidal, F. Werner, Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  97. F. Mintert, A.R.R. Carvalho, M. Kus, A. Buchleitner, Phys. Rep. 415, 207 (2005)

    ADS  MathSciNet  Google Scholar 

  98. C.H. Bennett, D.P. DiVincenzo, J. Smolin, W.K. Wooters, Phys. Rev. A 54, 3824 (1996)

    ADS  MathSciNet  Google Scholar 

  99. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    ADS  Google Scholar 

  100. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    ADS  Google Scholar 

  101. P. Rungta, V. Bǔzek, C.M. Caves, M. Hillery, C.-J. Milburn, Phys. Rev. A 64, 042315 (2001)

    ADS  MathSciNet  Google Scholar 

  102. F. Mintert, M. Kuś, A. Buchleitner, Phys. Rev. Lett. 95, 260502 (2005)

    ADS  MathSciNet  Google Scholar 

  103. S.P. Walborn, P.H.S. Ribeiro, L. Davidovich, F. Mintert, A. Buchleitner, Nature 440, 1022 (2006)

    ADS  Google Scholar 

  104. S.P. Walborn, P.H.S. Ribeiro, L. Davidovich, F. Mintert, A. Buchleitner, Phys. Rev. A 75, 032338 (2007)

    ADS  Google Scholar 

  105. F. Mintert, A. Buchleitner, Phys. Rev. Lett. 98, 140505 (2007)

    ADS  MathSciNet  Google Scholar 

  106. L Aolita, A. Buchleitner, F. Mintert, Phys. Rev. A 78, 022308 (2008)

    ADS  Google Scholar 

  107. C.-J. Zhang, Y.-X. Gong, Y.-S. Zhang, G.-C. Guo, Phys. Rev. A 78, 042308 (2008)

    ADS  Google Scholar 

  108. Y.-F. Huang, X.-L. Niu, Y.-X. Gong, J. Li, L. Peng, C.-J. Zhang, Y.-S. Zhang, G.-C. Guo, Phys. Rev. A 79, 052338 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, N., Ghosh, R. (2013). Quantum Information: Basic Relevant Concepts and Applications. In: Quantum Entanglement in Electron Optics. Springer Series on Atomic, Optical, and Plasma Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24070-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24070-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24069-0

  • Online ISBN: 978-3-642-24070-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics