Skip to main content

Finding Optimal Set of Orthogonal Polynomial Operators for Efficient Texture Feature Extraction

  • Conference paper
Advances in Digital Image Processing and Information Technology (DPPR 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 205))

  • 1363 Accesses

Abstract

Feature Extraction is the method of capturing the visual content of images for indexing and retrieval. It simplifies the amount of information required to describe a large set of data. In computer vision, feature detection refers to the computation of local image features from the image. Texture is the core element in numerous computer vision applications Orthogonal Polynomial Operators are generated from a basis operator of fixed size and their efficiency in extracting texture features is studied. These operators act as filters and their responses on images are considered as feature space. From each filtered image statistical features are extracted and an optimal operator set is designed by incorporating a feature selection approach. Mahalanobis separability metric is used in the feature selection process. The optimal operator set removes insignificant operators and thus improves the performance of texture classification. Experimental results on benchmark datasets prove the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural feature for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610–621 (1973)

    Google Scholar 

  2. Oliver, C.: Rain forest classification based on SAR texture. IEEE Transactions on Geoscience and Remote Sensing 38(2), 1095–1104 (2000)

    Article  MathSciNet  Google Scholar 

  3. Haralick, R.M.: Statistical and structural approaches to Texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  4. Conners, R., Harlow, C.: A theoretical comparison of texture algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(3), 204–222 (1980)

    Article  MATH  Google Scholar 

  5. Laws, K.: Textured image segmentation. Ph.D. thesis, University of Southern California, Los Angeles, USA (1980)

    Google Scholar 

  6. Ade, F.: Characterization of texture by eigenfilters. Signal Processing 5(5), 451–457 (1983)

    Article  Google Scholar 

  7. Ojala, T., Pietikainen, M.: Nonparametric multichannel texture description with simple spatial operators. In: Proc. 14th International Conference on Pattern Recognition, Brisbane, Australia, pp. 1052–1056 (1998)

    Google Scholar 

  8. Ojala, T., Pietikäinen, M., Mäenpää, T.: A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification. In: Singh, S., Murshed, N., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 397–406. Springer, Heidelberg (2001)

    Google Scholar 

  9. Hadjidemetriou, E., Grossberg, M., Nayar, S.: Multiresolution histograms and their use for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(7), 831–847 (2004)

    Article  Google Scholar 

  10. Huet, F., Mattioli, J.: A textural analysis by mathematical morphology transformations: structural opening and top-hat. In: Proc. International Conference on Image Processing, vol. 3, pp. 49–52 (1996)

    Google Scholar 

  11. Asano, A., Endo, J., Muraki, C.: Multiprimitive texture analysis using cluster analysis and size density function. In: Proc. International Symposium on Mathematical Morphology VI (2002)

    Google Scholar 

  12. Tuceryan, M., Jain, A.: Texture segmentation using voronoi polygons. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(2), 211–216 (1990)

    Article  Google Scholar 

  13. Ahonen, T., Pietikainen, M.: A framework for analyzing texture descriptors. In: Proc. Third International Conference on Computer Vision Theory and Applications (VISAPP 2008), Madeira, Portugal, vol. 1, pp. 507–512 (2008)

    Google Scholar 

  14. Ganesan, L., Bhattacharyya, P.: Edge detection in untextured and textured images-a common computational framework. IEEE Trans. Sys. Man Cybern. B. 27(5), 823–834 (1997)

    Article  Google Scholar 

  15. Krishnamoorthi, R., Kannan, N.: A new integer image coding technique based on orthogonal polynomials. Image and Vision Computing 27(8) (2009)

    Google Scholar 

  16. Li, W., Mao, K., Zhang, H., Chai, T.: Designing Compact Gabor Filter Banks for Efficient Texture Feature Extraction. In: Intl. Conference Control, Automation, Robotics and Vision, pp. 1193–1197 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suguna, R., Anandhakumar, P. (2011). Finding Optimal Set of Orthogonal Polynomial Operators for Efficient Texture Feature Extraction. In: Nagamalai, D., Renault, E., Dhanuskodi, M. (eds) Advances in Digital Image Processing and Information Technology. DPPR 2011. Communications in Computer and Information Science, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24055-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24055-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24054-6

  • Online ISBN: 978-3-642-24055-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics