• Tilman Plehn
Part of the Lecture Notes in Physics book series (LNP, volume 844)


Just as Chap. 1 is not meant to be a complete introduction to electroweak symmetry breaking but is aimed at introducing the aspects of Higgs physics most relevant to the LHC this section cannot cover the entire field of QCD. Instead, we will focus on QCD as it impacts LHC physics and searches for new physics at the LHC, like for example the Higgs searches discussed in the first part of the lecture.


Transverse Momentum Parton Shower Subtraction Term Parton Density Infrared Divergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ellis, R.K., Stirling, W.J., Webber, B.R.: QCD and collider physics camb. Monogr. Part. Phys. Nucl. Phys. Cosmol 8, 1 (1996)Google Scholar
  2. 2.
    Catani, S., Krauss, F., Kuhn, R., Webber, B.R.: QCD matrix elements + parton showers. JHEP 0111, 063 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Plehn, T., Tait, T.M.P.: Seeking Sgluons. J. Phys. G 36, 075001 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Englert, C., Plehn, T., Schichtel P., Schumann, S.: Jets plus missing energy with an autofocus. Phys. Rev. D 83, 095009 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Nachtmann, O.: Elementary particle physics: concepts and phenomena, pp. 559. Springer, Berlin (1990)Google Scholar
  6. 6.
    Burgess, C.P., Moore, G.D.: The standard model: a primer cambridge, pp. 542. Cambridge University Press, CambridgezbMATHGoogle Scholar
  7. 7.
    Dissertori, G., Knowles, I.G., Schmelling, M.: QCD—high energy experiments and theory oxford, pp. 538. Clarendon, UK (2003)Google Scholar
  8. 8.
    Field R.D.: Applications of perturbative QCD Redwood City. Addison-Wesley, USA, p. 366 (Frontiers in Physics, 77) (1989)Google Scholar
  9. 9.
    Ellis, S.D., Huston, J., Hatakeyama, K., Loch, P., Tonnesmann, M.: Jets in hadron–hadron collisions. Prog. Part. Nucl. Phys. 60, 484 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Salam G.P.: Towards jetography, arXiv:0906.1833 [hep-ph]Google Scholar
  11. 11.
    Campbell, J.M., Huston, J.W., Stirling, W.J.: Hard interactions of quarks and gluons: a primer for LHC physics. Rept. Prog. Phys. 70, 89 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Soper D.E.: Basics of QCD perturbation theory, arXiv:hep-ph/0011256Google Scholar
  13. 13.
    Sterman G.: QCD and jets arXiv:hep-ph/0412013Google Scholar
  14. 14.
    Seymour M.H.: Quantum chromodynamics, arXiv:hep-ph/0505192Google Scholar
  15. 15.
    Mangano M.L., Stelzer T.J.: Tools for the simulation of hard hadronic collisions. Ann. Rev. Nucl. Part. Sci. 55, 555 CERN-PH-TH-2005-074 (2005)Google Scholar
  16. 16.
    Alwall, J. et al.: Study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Frixione, S., Webber, B.R.: Matching NLO QCD computations and parton shower simulations. JHEP 0206, 029 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Nason, P.: A new method for combining NLO QCD with shower monte carlo algorithms. JHEP 0411, 040 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Frixione, S., Nason, P., Oleari, C.: Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 0711, 070 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Spira M.: QCD, Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations