Identifying Surprising Events in Video Using Bayesian Topic Models

  • Avishai Hendel
  • Daphna Weinshall
  • Shmuel Peleg
Part of the Studies in Computational Intelligence book series (SCI, volume 384)

Abstract

In this paper we focus on the problem of identifying interesting parts of the video. To this end we employ the notion of Bayesian surprise, as defined in [9, 10], in which an event is considered surprising if its occurrence leads to a large change in the probability of the world model. We propose to compute this abstract measure of surprise by first modeling a corpus of video events using the Latent Dirichlet Allocation model. Subsequently, we measure the change in the Dirichlet prior of the LDA model as a result of each video event’s occurrence. This leads to a closed form expression for an event’s level of surprise. We tested our algorithm on a real world video data, taken by a camera observing an urban street intersection. The results demonstrate our ability to detect atypical events, such as a car making a U-turn or a person crossing an intersection diagonally.

Keywords

Latent Dirichlet Allocation Probabilistic Latent Semantic Analysis Surprising Event Latent Dirichlet Allocation Model Video Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boiman, O., Irani, M.: Detecting Irregularities in Images and in Video. International Journal of Computer Vision 74(1), 17–31 (2007)CrossRefGoogle Scholar
  2. 2.
    Pritch, Y., Rav-Acha, A., Peleg, S.: Nonchronological Video Synopsis and Indexing. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1971–1984 (2008)CrossRefGoogle Scholar
  3. 3.
    Pritch, Y., Ratovitch, S., Hendel, A., Peleg, S.: Clustered Synopsis of Surveillance Video. In: Proc. AVSS (2009)Google Scholar
  4. 4.
    Sun, J., Zhang, W., Tang, X., Shum, H.-Y.: Background cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Sun, J., Wu, X., Yan, S., Cheong, L.F., Chua, T.S., Li, J.: Hierarchical spatio-temporal context modeling for action recognition. In: Proc. CVPR (2009)Google Scholar
  6. 6.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. In: Proc. NIPS (2001)Google Scholar
  7. 7.
    Fei-Fei, L., Perona, P.: A Bayesian Hierarchical Model for Learning Natural Scene Categories. In: Proc. CVPR (2005)Google Scholar
  8. 8.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. International Journal of Computer Vision 79(3), 299–318 (2008)CrossRefGoogle Scholar
  9. 9.
    Itti, L., Baldi, P.: A Principled Approach to Detecting Surprising Events in Video. In: Proc. CVPR (2005)Google Scholar
  10. 10.
    Schmidhuber, J.: Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes. In: Proc. ABiALS (2008)Google Scholar
  11. 11.
    Penny, W.D.: Kullback-Liebler Divergences of Normal, Gamma, Dirichlet and Wishart Densities. Technical report, Wellcome Department of Cognitive Neurology (2001)Google Scholar
  12. 12.
    Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. J. ACM 57(2) (2010)Google Scholar
  13. 13.
    Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering Objects and their Localization in Images. In: Proc. ICCV (2005)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Laptev, I., Lindeberg, T.: Local Descriptors for Spatio-temporal Recognition. In: Proc. SCVMA (2004)Google Scholar
  16. 16.
    Hofmann, T.: Probabilistic Latent Semantic Analysis. In: Proc. UAI (1999)Google Scholar
  17. 17.
    Jordan, M.I., Ghahramani, Z., Jaakkola, T., Saul, L.K.: An Introduction to Variational Methods for Graphical Models. Machine Learning 37(2), 183–233 (1999)MATHCrossRefGoogle Scholar
  18. 18.
    Hughes, R., Huang, H., Zegeer, C., Cynecki, M.: Evaluation of Automated Pedestrian Detection at Signalized Intersections. United States Department of Transportation, Federal Highway Administration Report (2001)Google Scholar
  19. 19.
    Ranganathan, A., Dellaert, F.: Bayesian surprise and landmark detection. In: Proc. ICRA (2009)Google Scholar
  20. 20.
    Hospedales, T., Gong, S., Xiang, T.: A Markov Clustering Topic Model for Mining Behaviour in Video. In: Proc. ICCV (2009)Google Scholar
  21. 21.
    Wang, X., Ma, X., Grimson, E.: Unsupervised Activity Perception by Hierarchical Bayesian Models. In: Proc. CVPR (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Avishai Hendel
    • 1
  • Daphna Weinshall
    • 1
  • Shmuel Peleg
    • 1
  1. 1.School of Computer Science and EngineeringHebrew University of JerusalemIsrael

Personalised recommendations