Incongruence Detection in Audio-Visual Processing

  • Michal Havlena
  • Jan Heller
  • Hendrik Kayser
  • Jörg-Hendrik Bach
  • Jörn Anemüller
  • Tomáš Pajdla
Part of the Studies in Computational Intelligence book series (SCI, volume 384)

Abstract

The recently introduced theory of incongruence allows for detection of unexpected events in observations via disagreement of classifiers on specific and general levels of a classifier hierarchy which encodes the understanding a machine currently has of the world. We present an application of this theory, a hierarchy of classifiers describing an audio-visual speaker detector, and show successful incongruence detection on sequences acquired by a static as well as by a moving AWEAR 2.0 device using the presented classifier hierarchy.

Keywords

Sound Source Detection Window Pedestrian Detection Omnidirectional Image Incongruent Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalal, N.: INRIA Object Detection and Localization Toolkit (2008), Software, http://pascal.inrialpes.fr/soft/olt
  2. 2.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR 2005, vol. 2, pp. 886–893 (2005)Google Scholar
  3. 3.
    Havlena, M., Ess, A., Moreau, W., Torii, A., Jančošek, M., Pajdla, T., Van Gool, L.: AWEAR 2.0 system: Omni-directional audio-visual data acquisition and processing. In: EGOVIS 2009: First Workshop on Egocentric Vision, pp. 49–56 (2009)Google Scholar
  4. 4.
    Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech and Signal Processing 24(4), 320–327 (1976)CrossRefGoogle Scholar
  5. 5.
    Pajdla, T., Havlena, M., Heller, J., Kayser, H., Bach, J.H., Anemüller, J.: Incongruence detection for detecting, removing, and repairing incorrect functionality in low-level processing. Research Report CTU–CMP–2009–19, Center for Machine Perception, K13133 FEE Czech Technical University (2009)Google Scholar
  6. 6.
    Pavel, M., Jimison, H., Weinshall, D., Zweig, A., Ohl, F., Hermansky, H.: Detection and identification of rare incongruent events in cognitive and engineering systems. Dirac white paper, OHSU (2008)Google Scholar
  7. 7.
    Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, MA (2002)Google Scholar
  8. 8.
    Torii, A., Havlena, M., Pajdla, T.: Omnidirectional image stabilization by computing camera trajectory. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 71–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Weinshall, D., et al.: Beyond novelty detection: Incongruent events, when general and specific classifiers disagree. In: NIPS 2008, pp. 1745–1752 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michal Havlena
    • 1
  • Jan Heller
    • 1
  • Hendrik Kayser
    • 2
  • Jörg-Hendrik Bach
    • 2
  • Jörn Anemüller
    • 2
  • Tomáš Pajdla
    • 1
  1. 1.Center for Machine Perception, Department of CyberneticsFEE, CTU in PraguePrague 6Czech Republic
  2. 2.Medizinische Physik, Fakultät VCarl von Ossietzky - Universität OldenburgOldenburgGermany

Personalised recommendations