An Open-Source Medical Image Processing and Visualization Tool to Analyze Cardiac SPECT Images

  • Luis Roberto Pereira de Paula
  • Carlos da Silva dos Santos
  • Marco Antonio Gutierrez
  • Roberto HirataJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)


Single Photon Emission Computed Tomography is a nuclear imaging technique based on measuring the spatial distribution of a radionuclide. One challenge here is the efficient presentation of information, since one single study can generate hundreds of image slices, whose individual examination would be too time consuming. In this paper, we present an open-source medical image processing and visualization tool to analyze cardiac images. The main features of the tool are: 1) an intuitive interface to select and to visualize any slice in different views from a series of spatial and temporal images; 2) a semi-automatic procedure to segment the left ventricle from other structures; 3) an implementation of the polar map visualization (Bull’s eye diagram) that follows recommendations from the American Heart Association. The proposed tool was applied in simulated images generated by a mathematical phantom and in real images.


Single Photon Emission Compute Tomography Visualization Tool Single Photon Emission Compute Tomography Image Gated Single Photon Emission Compute Tomography Single Photon Emission Compute Tomography Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gutierrez, M.A., Rebelo, M.S., Furuie, S.S., Meneghetti, J.C.: Automatic quantification of three-dimensional kinetic energy in gated myocardial perfusion single-photon-emission computerized tomography improved by a multiresolution technique. Journal of Electronic Imaging 12, 118–123 (2003)CrossRefGoogle Scholar
  2. 2.
    Garcia, E., Train, K.V., Maddahi, J., Prigent, F., Friedman, J., Areeda, J., Waxman, A., Berman, D.: Quantification of rotational thallium-201 myocardial tomography. Journal of Nuclear Medicine 26, 17–26 (1985)Google Scholar
  3. 3.
    Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 105, 539–542 (2002)CrossRefGoogle Scholar
  4. 4.
    Germano, G., Kavanagh, P.B., Waechter, P., Areeda, J., Kriekinge, S.V., Sharir, T., Lewin, H.C., Berman, D.S.: A new algorithm for the quantitation of myocardial perfusion SPECT. I: Technical principles and reproducibility. Journal of Nuclear Medicine 41, 712–719 (2000)Google Scholar
  5. 5.
    Sharir, T., Germano, G., Waechter, P.B., Kavanagh, P.B., Areeda, J.S., Gerlach, J., Kang, X., Lewin, H.C., Berman, D.S.: A new algorithm for the quantitation of myocardial perfusion SPECT. II: Validation and diagnostic yield. Journal of Nuclear Medicine 41, 720–727 (2001)Google Scholar
  6. 6.
    Van Train, K.F., Garcia, E.V., Germano, G., Areeda, J.S., Berman, D.S.: New Algorithm for Quantification of Myocardial Perfusion SPECT. J. Nucl. Med. 42, 391–392 (2001)Google Scholar
  7. 7.
    Oliveira, L.F., Zanchet, B.A., Barros, R.C., Simões, M.V.: A new approach for creating polar maps of three-dimensional cardiac perfusion images. In: Gonçalves, L., Wu, S.T. (eds.) Proceedings, Porto Alegre, Sociedade Brasileira de Computação (2007)Google Scholar
  8. 8.
    Ezekiel, A., Train, K.V., Silagan, G., Maddahi, J., Garcia, E.V.: Automatic determination of quantification parameters from Tc-sestamibi myocardial tomograms. In: Computers in Cardiology, pp. 237–240 (1991)Google Scholar
  9. 9.
    Moro, C., Moura, L., Robilotta, C.C.: Improving the reliability of bull’s eye method. In: Computers in Cardiology, pp. 485–487 (1994)Google Scholar
  10. 10.
    Beucher, S., Meyer, F.: 12. The Morphological Approach to Segmentation: The Watershed Transformation. In: Mathematical Morphology in Image Processing, pp. 433–481. Marcel Dekker, New York (1992)Google Scholar
  11. 11.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Beare, R., Lehmann, G.: The watershed transform in ITK - discussion and new developments. The Insight Journal (2006),
  13. 13.
    Yoo, T.S., Metaxas, D.N.: Open science – combining open data and open source software: Medical image analysis with the insight toolkit. Medical Imaging Analysis 9 (2005)Google Scholar
  14. 14.
    Schroeder, W.J., Avila, L.S., Hoffman, W.: Visualization with VTK: a tutorial. IEEE Computer Graphics and Applications 20, 20–27 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luis Roberto Pereira de Paula
    • 1
  • Carlos da Silva dos Santos
    • 2
  • Marco Antonio Gutierrez
    • 3
  • Roberto HirataJr.
    • 1
  1. 1.Institute of Mathematics and StatisticsUniversity of Sao PauloBrazil
  2. 2.UFABCBrazil
  3. 3.Heart InstituteUniversity of Sao Paulo Medical SchoolBrazil

Personalised recommendations