Handymap: A Selection Interface for Cluttered VR Environments Using a Tracked Hand-Held Touch Device

  • Mores Prachyabrued
  • David L. Ducrest
  • Christoph W. Borst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)


We present Handymap, a novel selection interface for virtual environments with dense datasets. The approach was motivated by shortcomings of standard ray-casting methods in highly cluttered views such as in our visualization application for coalbed methane well logs. Handymap uses a secondary 2D overview of a scene that allows selection of a target when it is occluded in the main view, and that reduces required pointing precision. Reduced sensitivity to pointing precision is especially useful for consumer-level VR systems due to their modest tracking precision and display sizes. The overview is presented on a tracked touch device (iPod Touch) that is also usable as a general VR wand. Objects are selected by a tap or touch-move-release action on the touch surface. Optionally, redundant visual feedback and highlighting on the main display can allow a user to keep focus on the main display and may be useful with standard wand interfaces. Initial user feedback suggests Handymap can be a useful selection interface for cluttered environments but may require some learning.


Virtual Reality Virtual Environment Domain Expert Display Size Coalbed Methane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mine, M.R.: Virtual Environment Interaction Techniques. Technical Report, University of North Carolina at Chapel Hill (1995)Google Scholar
  2. 2.
    Steed, A., Parker, C.: 3D Selection Strategies for Head Tracked and Non-Head Tracked Operation of Spatially Immersive Displays. In: 8th International Immersive Projection Technology Workshop (2004)Google Scholar
  3. 3.
    Poupyrev, I., Weghorst, S., Billinghurst, M., Ichikawa, T.: Egocentric Object Manipulation in Virtual Environments: Empirical Evaluation of Interaction Techniques. Computer Graphics Forum 17(3), 41–52 (1998)CrossRefGoogle Scholar
  4. 4.
    Bowman, D.A., Johnson, D.B., Hodges, L.F.: Testbed Evaluation of Virtual Environment Interaction Techniques. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology (VRST), pp. 26–33 (1999)Google Scholar
  5. 5.
    Grossman, T., Balakrishnan, R.: The Design and Evaluation of Selection Techniques for 3D Volumetric Displays. In: Proceedings of ACM Symposium on User Interface Software and Technology (UIST), pp. 3–12 (2006)Google Scholar
  6. 6.
    Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley, Reading (2004)Google Scholar
  7. 7.
    Olwal, A., Feiner, S.: The Flexible Pointer: An Interaction Technique for Augmented and Virtual Reality. In: Conference Supplement of ACM Symposium on User Interface Software and Technology (UIST), pp. 81–82 (2003)Google Scholar
  8. 8.
    Wyss, H.P., Blach, R., Bues, M.: iSith – Intersection-based Spatial Interaction for Two Hands. In: Proceedings of IEEE Symposium on 3D User Interfaces (3DUI), pp. 59–61 (2006)Google Scholar
  9. 9.
    Liang, J., Green, M.: JDCAD: A Highly Interactive 3D Modeling System. Computers and Graphics 18(4), 499–506 (1994)CrossRefGoogle Scholar
  10. 10.
    ForsBerg, A., Herndon, K., Zeleznik, R.: Aperture Based Selection for Immersive Virtual Environments. In: Proceedings of ACM Symposium on User Interface Software and Technology, pp. 95–96 (1996)Google Scholar
  11. 11.
    Frees, S., Kessler, G.D., Kay, E.: PRISM Interaction for Enhancing Control in Immersive Virtual Environments. ACM Transactions on Computer-Human Interaction 14(1), 2 (2007)CrossRefGoogle Scholar
  12. 12.
    Kopper, R., Bacim, F., Bowman, D.A.: Rapid and Accurate 3D Selection by Progressive Refinement. In: Proceedings of IEEE Symposium on 3D User Interfaces (3DUI), pp. 67–74 (2011)Google Scholar
  13. 13.
    Aspin, R., Le, K.H.: Augmenting the CAVE: An Initial Study into Close Focused, Inward Looking, Exploration in IPT Systems. In: Proceedings of IEEE Symposium on Distributed Simulation and Real-Time Applications, pp. 217–224 (2007)Google Scholar
  14. 14.
    Olwal, A., Feiner, S.: Spatially Aware Handhelds for High-Precision Tangible Interaction with Large Displays. In: Proceedings of International Conference on Tangible and Embedded Interaction (TEI), pp. 181–188 (2009)Google Scholar
  15. 15.
    Katzakis, N., Hori, M.: Mobile Devices as Multi-DOF Controllers. In: Proceedings of IEEE Symposium on 3D User Interfaces (3DUI), pp. 139–140 (2010)Google Scholar
  16. 16.
    Kim, J.-S., Gračanin, D., Matković, K., Quek, F.: Finger walking in place (FWIP): A traveling technique in virtual environments. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.) SG 2008. LNCS, vol. 5166, pp. 58–69. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Kim, J., Gračanin, D., Matković, K., Quek, F.: iPhone/iPod Touch as Input Devices for Navigation in Immersive Virtual Environments. In: Proceedings of IEEE Conference on Virtual Reality (VR), pp. 261–262 (2009)Google Scholar
  18. 18.
    Song, P., Goh, W.B., Fu, C., Meng, Q., Heng, P.: WYSIWYF: Exploring and Annotating Volume Data with a Tangible Handheld Device. In: Proceedings of ACM Annual Conference on Human Factors in Computing Systems (CHI), pp. 1333–1342 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mores Prachyabrued
    • 1
  • David L. Ducrest
    • 2
  • Christoph W. Borst
    • 1
  1. 1.University of LouisianaLafayetteUSA
  2. 2.Louisiana Immersive Technologies EnterpriseLafayetteUSA

Personalised recommendations